The Maurer–Cartan Form

L. Tu
{"title":"The Maurer–Cartan Form","authors":"L. Tu","doi":"10.2307/j.ctvrdf1gz.21","DOIUrl":null,"url":null,"abstract":"This chapter illustrates the Maurer-Cartan form. On every Lie group G with Lie algebra g, there is a unique canonically defined left-invariant g-valued 1-form called the Maurer-Cartan form. The chapter describes the Maurer-Cartan form and the equation it satisfies, the Maurer-Cartan equation. The Maurer-Cartan form allows one to define a connection on the product bundle M × G → M for any manifold M. The Lie algebra g of a Lie group G is defined to be the tangent space at the identity. One will often identify the two vector spaces and think of elements of g as left-invariant vector fields on G.","PeriodicalId":272846,"journal":{"name":"Introductory Lectures on Equivariant Cohomology","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Introductory Lectures on Equivariant Cohomology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2307/j.ctvrdf1gz.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This chapter illustrates the Maurer-Cartan form. On every Lie group G with Lie algebra g, there is a unique canonically defined left-invariant g-valued 1-form called the Maurer-Cartan form. The chapter describes the Maurer-Cartan form and the equation it satisfies, the Maurer-Cartan equation. The Maurer-Cartan form allows one to define a connection on the product bundle M × G → M for any manifold M. The Lie algebra g of a Lie group G is defined to be the tangent space at the identity. One will often identify the two vector spaces and think of elements of g as left-invariant vector fields on G.
毛雷尔-卡坦式
本章说明毛雷尔-卡坦形式。在每一个具有李代数G的李群G上,存在一个唯一的正则定义的左不变G值1形式,称为毛雷尔-卡坦形式。这一章描述了毛雷尔-卡坦形式和它所满足的方程——毛雷尔-卡坦方程。毛雷尔-卡坦形式允许在任意流形M的积束M × G→M上定义一个连接。李群G的李代数G被定义为单位元处的切空间。人们通常会识别这两个向量空间并将g的元素视为g上的左不变向量场。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信