Neural networks for sidescan sonar automatic target detection

M.J. LeBlanc, E. Manolakos
{"title":"Neural networks for sidescan sonar automatic target detection","authors":"M.J. LeBlanc, E. Manolakos","doi":"10.1109/NNSP.1991.239521","DOIUrl":null,"url":null,"abstract":"The goal of this research is to develop a multi-layer feedforward neural network architecture which can distinguish targets (in this case, mines) from background clutter in sidescan sonar images. The network is to be implemented on a hardware neurocomputer currently in development at CSDL, with the goal of eventual real-time performance in the field. A variety of neural network architectures are developed, simulated, and evaluated in an attempt to find the best approach for this particular application. It has been found that classical statistical feature extraction is outperformed by a much less computationally expensive approach that simultaneously compresses and filters the raw data by taking a simple mean.<<ETX>>","PeriodicalId":354832,"journal":{"name":"Neural Networks for Signal Processing Proceedings of the 1991 IEEE Workshop","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks for Signal Processing Proceedings of the 1991 IEEE Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNSP.1991.239521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The goal of this research is to develop a multi-layer feedforward neural network architecture which can distinguish targets (in this case, mines) from background clutter in sidescan sonar images. The network is to be implemented on a hardware neurocomputer currently in development at CSDL, with the goal of eventual real-time performance in the field. A variety of neural network architectures are developed, simulated, and evaluated in an attempt to find the best approach for this particular application. It has been found that classical statistical feature extraction is outperformed by a much less computationally expensive approach that simultaneously compresses and filters the raw data by taking a simple mean.<>
侧扫描声纳自动目标探测的神经网络
本研究的目标是开发一种多层前馈神经网络架构,以区分侧面扫描声纳图像中的目标(在本例中是地雷)和背景杂波。该网络将在CSDL目前正在开发的硬件神经计算机上实现,目标是最终实现该领域的实时性能。各种各样的神经网络架构被开发、模拟和评估,试图找到适合这个特定应用的最佳方法。已经发现,经典的统计特征提取的性能优于一种计算成本低得多的方法,该方法同时通过取简单平均值来压缩和过滤原始数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信