An Intelligent Computing Prediction Model for Satellite Images

Long Jin, Ying Huang, Ru He
{"title":"An Intelligent Computing Prediction Model for Satellite Images","authors":"Long Jin, Ying Huang, Ru He","doi":"10.1109/CSO.2011.78","DOIUrl":null,"url":null,"abstract":"Using Empirical Orthogonal Function (EOF) method, the time coefficients were extracted from the samples of infrared satellite images every 3-h in heavy rainfall processes as predictands for images prediction modeling. Based on the technique of the reduction of data dimensionality, genetic neural network ensemble prediction (GNNEP) models have been developed for the associated predictands using predictors from physical quantities prediction products of numerical prediction model. The future satellite images were obtained by integrating the predicted time coefficients with the corresponding space vectors. Results show that the nonlinear prediction model can better forecast the main features of the development of cloud cluster with heavy rainfall in future 20-h.","PeriodicalId":210815,"journal":{"name":"2011 Fourth International Joint Conference on Computational Sciences and Optimization","volume":"187 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Fourth International Joint Conference on Computational Sciences and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSO.2011.78","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Using Empirical Orthogonal Function (EOF) method, the time coefficients were extracted from the samples of infrared satellite images every 3-h in heavy rainfall processes as predictands for images prediction modeling. Based on the technique of the reduction of data dimensionality, genetic neural network ensemble prediction (GNNEP) models have been developed for the associated predictands using predictors from physical quantities prediction products of numerical prediction model. The future satellite images were obtained by integrating the predicted time coefficients with the corresponding space vectors. Results show that the nonlinear prediction model can better forecast the main features of the development of cloud cluster with heavy rainfall in future 20-h.
卫星图像的智能计算预测模型
利用经验正交函数(EOF)方法,从暴雨过程中每3 h的红外卫星图像样本中提取时间系数,作为图像预测模型的预测指标。基于数据降维技术,利用数值预测模型的物理量预测产物中的预测因子,建立了相关预测因子的遗传神经网络集成预测模型。将预测的时间系数与相应的空间矢量进行积分,得到未来的卫星图像。结果表明,非线性预测模型能较好地预测未来20 h强降雨云团发展的主要特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信