LARGE-SCALE AUTOREGRESSIVE SYSTEM IDENTIFICATION USING KRONECKER PRODUCT EQUATIONS

Martijn Boussé, L. D. Lathauwer
{"title":"LARGE-SCALE AUTOREGRESSIVE SYSTEM IDENTIFICATION USING KRONECKER PRODUCT EQUATIONS","authors":"Martijn Boussé, L. D. Lathauwer","doi":"10.1109/GlobalSIP.2018.8646598","DOIUrl":null,"url":null,"abstract":"By exploiting the intrinsic structure and/or sparsity of the system coefficients in large-scale system identification, one can enable efficient processing. In this paper, we employ this strategy for large-scale single-input multiple-output autoregressive system identification by assuming the coefficients can be well approximated by Kronecker products of smaller vectors. We show that the identification problem can be refor-mulated as the computation of a Kronecker product equation, allowing one to use optimization-based and algebraic solvers.","PeriodicalId":119131,"journal":{"name":"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GlobalSIP.2018.8646598","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

By exploiting the intrinsic structure and/or sparsity of the system coefficients in large-scale system identification, one can enable efficient processing. In this paper, we employ this strategy for large-scale single-input multiple-output autoregressive system identification by assuming the coefficients can be well approximated by Kronecker products of smaller vectors. We show that the identification problem can be refor-mulated as the computation of a Kronecker product equation, allowing one to use optimization-based and algebraic solvers.
基于kronecker积方程的大规模自回归系统辨识
通过利用大规模系统识别中系统系数的固有结构和/或稀疏性,可以实现有效的处理。在本文中,我们通过假设系数可以很好地近似于较小向量的Kronecker积,将该策略用于大规模单输入多输出自回归系统辨识。我们表明,识别问题可以重新表述为一个克罗内克积方程的计算,允许使用基于优化和代数求解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信