Classification of pixel-level fused hyperspectral and lidar data using deep convolutional neural networks

Saurabh Morchhale, V. P. Pauca, R. Plemmons, T. Torgersen
{"title":"Classification of pixel-level fused hyperspectral and lidar data using deep convolutional neural networks","authors":"Saurabh Morchhale, V. P. Pauca, R. Plemmons, T. Torgersen","doi":"10.1109/WHISPERS.2016.8071715","DOIUrl":null,"url":null,"abstract":"We investigate classification from pixel-level fusion of Hyperspectral (HSI) and Light Detection and Ranging (LiDAR) data using convolutional neural networks (CNN). HSI and LiDAR imaging are complementary modalities increasingly used together for geospatial data collection in remote sensing. HSI data is used to glean information about material composition and LiDAR data provides information about the geometry of objects in the scene. Two key questions relative to classification performance are addressed: the effect of merging multi-modal data and the effect of uncertainty in the CNN training data. Two recent co-registered HSI and LiDAR datasets are used here to characterize performance. One was collected, over Houston TX, by the University of Houston National Center for Airborne Laser Mapping with NSF sponsorship, and the other was collected, over Gulfport MS, by Universities of Florida and Missouri with NGA sponsorship.","PeriodicalId":369281,"journal":{"name":"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WHISPERS.2016.8071715","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

Abstract

We investigate classification from pixel-level fusion of Hyperspectral (HSI) and Light Detection and Ranging (LiDAR) data using convolutional neural networks (CNN). HSI and LiDAR imaging are complementary modalities increasingly used together for geospatial data collection in remote sensing. HSI data is used to glean information about material composition and LiDAR data provides information about the geometry of objects in the scene. Two key questions relative to classification performance are addressed: the effect of merging multi-modal data and the effect of uncertainty in the CNN training data. Two recent co-registered HSI and LiDAR datasets are used here to characterize performance. One was collected, over Houston TX, by the University of Houston National Center for Airborne Laser Mapping with NSF sponsorship, and the other was collected, over Gulfport MS, by Universities of Florida and Missouri with NGA sponsorship.
基于深度卷积神经网络的像素级融合高光谱和激光雷达数据分类
我们利用卷积神经网络(CNN)研究了高光谱(HSI)和光探测和测距(LiDAR)数据的像素级融合分类。HSI和激光雷达成像是互补的模式,越来越多地一起用于遥感地理空间数据收集。HSI数据用于收集有关材料组成的信息,LiDAR数据提供有关场景中物体几何形状的信息。解决了与分类性能相关的两个关键问题:合并多模态数据的影响和CNN训练数据中不确定性的影响。这里使用两个最近共同注册的HSI和LiDAR数据集来表征性能。其中一个是由休斯顿大学国家航空激光测绘中心在美国国家科学基金会的赞助下收集的,另一个是由佛罗里达大学和密苏里大学在美国国家航空航天局的赞助下收集的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信