Using more realistic data models to evaluate sensor network data processing algorithms

Yan Yu, D. Estrin, Mohammad H. Rahimi, R. Govindan
{"title":"Using more realistic data models to evaluate sensor network data processing algorithms","authors":"Yan Yu, D. Estrin, Mohammad H. Rahimi, R. Govindan","doi":"10.1109/LCN.2004.133","DOIUrl":null,"url":null,"abstract":"Due to lack of experimental data and sophisticated models derived from such data, most data processing algorithms from the sensor network literature are evaluated with data generated from simple parametric models. Unfortunately, the type of data input used in the evaluation often significantly affects the algorithm performance. Our case studies of a few widely-studied sensor network data processing algorithms demonstrated the need to evaluate algorithms with data across a range of parameters. In conclusion, we propose our synthetic data generation framework.","PeriodicalId":366183,"journal":{"name":"29th Annual IEEE International Conference on Local Computer Networks","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"29th Annual IEEE International Conference on Local Computer Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LCN.2004.133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Due to lack of experimental data and sophisticated models derived from such data, most data processing algorithms from the sensor network literature are evaluated with data generated from simple parametric models. Unfortunately, the type of data input used in the evaluation often significantly affects the algorithm performance. Our case studies of a few widely-studied sensor network data processing algorithms demonstrated the need to evaluate algorithms with data across a range of parameters. In conclusion, we propose our synthetic data generation framework.
使用更现实的数据模型来评估传感器网络数据处理算法
由于缺乏实验数据和由这些数据推导的复杂模型,大多数传感器网络文献中的数据处理算法都是用简单参数模型生成的数据来评估的。不幸的是,在评估中使用的数据输入类型通常会显著影响算法的性能。我们对一些被广泛研究的传感器网络数据处理算法的案例研究表明,需要使用一系列参数的数据来评估算法。最后,我们提出了我们的合成数据生成框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信