Likelihood Map Fusion for Visual Object Tracking

Zhaozheng Yin, F. Porikli, R. Collins
{"title":"Likelihood Map Fusion for Visual Object Tracking","authors":"Zhaozheng Yin, F. Porikli, R. Collins","doi":"10.1109/WACV.2008.4544036","DOIUrl":null,"url":null,"abstract":"Visual object tracking can be considered as a figure-ground classification task. In this paper, different features are used to generate a set of likelihood maps for each pixel indicating the probability of that pixel belonging to foreground object or scene background. For example, intensity, texture, motion, saliency and template matching can all be used to generate likelihood maps. We propose a generic likelihood map fusion framework to combine these heterogeneous features into a fused soft segmentation suitable for mean-shift tracking. All the component likelihood maps contribute to the segmentation based on their classification confidence scores (weights) learned from the previous frame. The evidence combination framework dynamically updates the weights such that, in the fused likelihood map, discriminative foreground/background information is preserved while ambiguous information is suppressed. The framework is applied here to track ground vehicles from thermal airborne video, and is also compared to other state-of-the-art algorithms.","PeriodicalId":439571,"journal":{"name":"2008 IEEE Workshop on Applications of Computer Vision","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"47","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Workshop on Applications of Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV.2008.4544036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 47

Abstract

Visual object tracking can be considered as a figure-ground classification task. In this paper, different features are used to generate a set of likelihood maps for each pixel indicating the probability of that pixel belonging to foreground object or scene background. For example, intensity, texture, motion, saliency and template matching can all be used to generate likelihood maps. We propose a generic likelihood map fusion framework to combine these heterogeneous features into a fused soft segmentation suitable for mean-shift tracking. All the component likelihood maps contribute to the segmentation based on their classification confidence scores (weights) learned from the previous frame. The evidence combination framework dynamically updates the weights such that, in the fused likelihood map, discriminative foreground/background information is preserved while ambiguous information is suppressed. The framework is applied here to track ground vehicles from thermal airborne video, and is also compared to other state-of-the-art algorithms.
视觉目标跟踪的似然图融合
视觉目标跟踪可以看作是一项图地分类任务。在本文中,使用不同的特征为每个像素生成一组似然图,表示该像素属于前景物体或场景背景的概率。例如,强度、纹理、运动、显著性和模板匹配都可以用来生成似然图。我们提出了一个通用的似然图融合框架,将这些异构特征结合到一个适合均值偏移跟踪的融合软分割中。所有的成分似然图都基于从前一个框架中学习到的分类置信度分数(权重)来进行分割。证据组合框架动态更新权值,在融合似然图中保留有区别的前景/背景信息,同时抑制模糊信息。该框架在此应用于从热机载视频跟踪地面车辆,并与其他最先进的算法进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信