Backward reduction application for minimizing wind power scenarios in stochastic programming

N. Razali, A. Hashim
{"title":"Backward reduction application for minimizing wind power scenarios in stochastic programming","authors":"N. Razali, A. Hashim","doi":"10.1109/PEOCO.2010.5559252","DOIUrl":null,"url":null,"abstract":"In order to make informed decisions in the presence of uncertainties, risk management problems of power utilities may be modelled by multistage stochastic programs. These programs use a set of scenarios (or plausible realizations) and corresponding probabilities to model the multivariate random data process, e.g. electrical load, stream flows to hydro units, generation output of intermittent renewable sources as well as fuel and electricity prices. The number of scenarios needed to accurately represent the uncertainty involved is generally large, thus due to computational complexity and time limitation, scenario reduction techniques are often utilized. The paper proposes a new application for recursive backward scenario reduction to establish possible next-day scenarios for wind power generation at Mersing Johor, Malaysia. The algorithm determines a subset from the initial scenario set and assigns new probabilities to the preserved scenarios. The output is intended to assist generation scheduling of power system employing intermittent type renewable sources.","PeriodicalId":379868,"journal":{"name":"2010 4th International Power Engineering and Optimization Conference (PEOCO)","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"81","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 4th International Power Engineering and Optimization Conference (PEOCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PEOCO.2010.5559252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 81

Abstract

In order to make informed decisions in the presence of uncertainties, risk management problems of power utilities may be modelled by multistage stochastic programs. These programs use a set of scenarios (or plausible realizations) and corresponding probabilities to model the multivariate random data process, e.g. electrical load, stream flows to hydro units, generation output of intermittent renewable sources as well as fuel and electricity prices. The number of scenarios needed to accurately represent the uncertainty involved is generally large, thus due to computational complexity and time limitation, scenario reduction techniques are often utilized. The paper proposes a new application for recursive backward scenario reduction to establish possible next-day scenarios for wind power generation at Mersing Johor, Malaysia. The algorithm determines a subset from the initial scenario set and assigns new probabilities to the preserved scenarios. The output is intended to assist generation scheduling of power system employing intermittent type renewable sources.
随机规划中风电情景最小化的逆向约简应用
为了在存在不确定性的情况下做出明智的决策,电力公司的风险管理问题可以用多阶段随机规划来建模。这些程序使用一组场景(或合理的实现)和相应的概率来模拟多元随机数据过程,例如电力负荷、流向水力发电机组的流量、间歇性可再生能源的发电输出以及燃料和电价。准确表示所涉及的不确定性所需的情景数量通常很大,因此由于计算复杂性和时间限制,通常采用情景简化技术。本文提出了一种新的应用程序递归向后情景减少,以建立可能的第二天在马来西亚柔佛默辛风力发电情景。该算法从初始场景集中确定一个子集,并为保留的场景分配新的概率。该输出用于辅助间歇式可再生能源发电系统的发电调度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信