Improvement of Adaptive Lasso in Binary Quantile Regression

Sheng Fu
{"title":"Improvement of Adaptive Lasso in Binary Quantile Regression","authors":"Sheng Fu","doi":"10.1145/3459104.3459190","DOIUrl":null,"url":null,"abstract":"In order to avoid the over-fitting of the model, the adaptive LASSO method was used to the variables selection of the binary quantile regression model. Bayesian method is use to construct the Gibbs sampling algorithm and the constraint condition that does not affect the predictive result is used to improve the stability of the sampling value. That the improved model has better parameter estimation efficiency and variable selection effect and classification ability are illustrated in the numerical simulation.","PeriodicalId":142284,"journal":{"name":"2021 International Symposium on Electrical, Electronics and Information Engineering","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Symposium on Electrical, Electronics and Information Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3459104.3459190","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In order to avoid the over-fitting of the model, the adaptive LASSO method was used to the variables selection of the binary quantile regression model. Bayesian method is use to construct the Gibbs sampling algorithm and the constraint condition that does not affect the predictive result is used to improve the stability of the sampling value. That the improved model has better parameter estimation efficiency and variable selection effect and classification ability are illustrated in the numerical simulation.
二值分位数回归中自适应Lasso的改进
为了避免模型的过拟合,采用自适应LASSO方法对二元分位数回归模型进行变量选择。采用贝叶斯方法构造Gibbs抽样算法,并采用不影响预测结果的约束条件来提高抽样值的稳定性。数值模拟结果表明,改进后的模型具有更好的参数估计效率、变量选择效果和分类能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信