Calculating stack distances efficiently

G. Almási, Calin Cascaval, D. Padua
{"title":"Calculating stack distances efficiently","authors":"G. Almási, Calin Cascaval, D. Padua","doi":"10.1145/773146.773043","DOIUrl":null,"url":null,"abstract":"This paper1 describes our experience using the stack processing algorithm [6] for estimating the number of cache misses in scientific programs. By using a new data structure and various optimization techniques we obtain instrumented run-times within 50 to 100 times the original optimized run-times of our benchmarks.","PeriodicalId":365109,"journal":{"name":"Memory System Performance","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"132","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Memory System Performance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/773146.773043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 132

Abstract

This paper1 describes our experience using the stack processing algorithm [6] for estimating the number of cache misses in scientific programs. By using a new data structure and various optimization techniques we obtain instrumented run-times within 50 to 100 times the original optimized run-times of our benchmarks.
有效地计算堆栈距离
本文1描述了我们在科学项目中使用堆栈处理算法[6]来估计缓存缺失次数的经验。通过使用新的数据结构和各种优化技术,我们获得了比基准测试原始优化运行时低50到100倍的仪器化运行时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信