Storage-Aware Value Prediction

M. Salehi, A. Baniasadi
{"title":"Storage-Aware Value Prediction","authors":"M. Salehi, A. Baniasadi","doi":"10.1109/DSD.2010.70","DOIUrl":null,"url":null,"abstract":"Despite the huge potential, value predictors have not been used in modern processors. This is partially due to the complex structures associated with such predictors. In this paper we study value predictors and investigate solutions to reduce storage requirements while imposing negligible coverage cost. Our solutions build on the observation that conventional value predictors do not utilize storage efficiently as they allocate too much space for small and frequently appearing values. We measure data width requirement and entropy in a subset of predictor resources and show that values stored in predictors show limited sizes and very small entropy. We exploit this behavior and suggest different bit sharing solutions for predictors storing single byte values.","PeriodicalId":356885,"journal":{"name":"2010 13th Euromicro Conference on Digital System Design: Architectures, Methods and Tools","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 13th Euromicro Conference on Digital System Design: Architectures, Methods and Tools","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSD.2010.70","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Despite the huge potential, value predictors have not been used in modern processors. This is partially due to the complex structures associated with such predictors. In this paper we study value predictors and investigate solutions to reduce storage requirements while imposing negligible coverage cost. Our solutions build on the observation that conventional value predictors do not utilize storage efficiently as they allocate too much space for small and frequently appearing values. We measure data width requirement and entropy in a subset of predictor resources and show that values stored in predictors show limited sizes and very small entropy. We exploit this behavior and suggest different bit sharing solutions for predictors storing single byte values.
存储感知值预测
尽管潜力巨大,但价值预测器尚未在现代处理器中使用。这部分是由于与这些预测器相关的复杂结构。在本文中,我们研究了价值预测因子,并研究了在施加可忽略不计的覆盖成本的情况下减少存储需求的解决方案。我们的解决方案基于这样的观察:传统的值预测器不能有效地利用存储,因为它们为小而频繁出现的值分配了太多的空间。我们测量预测器资源子集中的数据宽度需求和熵,并显示存储在预测器中的值显示有限的大小和非常小的熵。我们利用这种行为,并为存储单字节值的预测器提出了不同的位共享解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信