Improved Adam Optimizer for Deep Neural Networks

Zijun Zhang
{"title":"Improved Adam Optimizer for Deep Neural Networks","authors":"Zijun Zhang","doi":"10.1109/IWQoS.2018.8624183","DOIUrl":null,"url":null,"abstract":"Adaptive optimization algorithms, such as Adam and RMSprop, have witnessed better optimization performance than stochastic gradient descent (SGD) in some scenarios. However, recent studies show that they often lead to worse generalization performance than SGD, especially for training deep neural networks (DNNs). In this work, we identify the reasons that Adam generalizes worse than SGD, and develop a variant of Adam to eliminate the generalization gap. The proposed method, normalized direction-preserving Adam (ND-Adam), enables more precise control of the direction and step size for updating weight vectors, leading to significantly improved generalization performance. Following a similar rationale, we further improve the generalization performance in classification tasks by regularizing the softmax logits. By bridging the gap between SGD and Adam, we also hope to shed light on why certain optimization algorithms generalize better than others.","PeriodicalId":222290,"journal":{"name":"2018 IEEE/ACM 26th International Symposium on Quality of Service (IWQoS)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"583","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/ACM 26th International Symposium on Quality of Service (IWQoS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWQoS.2018.8624183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 583

Abstract

Adaptive optimization algorithms, such as Adam and RMSprop, have witnessed better optimization performance than stochastic gradient descent (SGD) in some scenarios. However, recent studies show that they often lead to worse generalization performance than SGD, especially for training deep neural networks (DNNs). In this work, we identify the reasons that Adam generalizes worse than SGD, and develop a variant of Adam to eliminate the generalization gap. The proposed method, normalized direction-preserving Adam (ND-Adam), enables more precise control of the direction and step size for updating weight vectors, leading to significantly improved generalization performance. Following a similar rationale, we further improve the generalization performance in classification tasks by regularizing the softmax logits. By bridging the gap between SGD and Adam, we also hope to shed light on why certain optimization algorithms generalize better than others.
改进的深度神经网络Adam优化器
自适应优化算法,如Adam和RMSprop,在某些情况下比随机梯度下降(SGD)的优化性能更好。然而,最近的研究表明,它们往往导致比SGD更差的泛化性能,特别是在训练深度神经网络(dnn)时。在这项工作中,我们确定了Adam泛化比SGD差的原因,并开发了Adam的变体来消除泛化差距。提出的归一化方向保持亚当(ND-Adam)方法可以更精确地控制更新权重向量的方向和步长,从而显著提高泛化性能。遵循类似的原理,我们通过规范softmax logits进一步提高了分类任务的泛化性能。通过弥合SGD和Adam之间的差距,我们还希望阐明为什么某些优化算法比其他算法泛化得更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信