Optimal Methodology for Detecting Land Cover Change in a Forestry, Lakeside Environment Using NAIP Imagery

Xiaomin Qiu, D. Sha, Xuelian Meng
{"title":"Optimal Methodology for Detecting Land Cover Change in a Forestry, Lakeside Environment Using NAIP Imagery","authors":"Xiaomin Qiu, D. Sha, Xuelian Meng","doi":"10.4018/IJAGR.2019010102","DOIUrl":null,"url":null,"abstract":"Mapping land cover change is useful for various environmental and urban planning applications, e.g. land management, forest conservation, ecological assessment, transportation planning, and impervious surface control. As the optimal change detection approaches, algorithms, and parameters often depend on the phenomenon of interest and the remote sensing imagery used, the goal of this study is to find the optimal procedure for detecting urban growth in rural, forestry areas using one-meter, four-band NAIP images. Focusing on different types of impervious covers, the authors test the optimal segmentation parameters for object-based image analysis, and conclude that the random tree classifier, among the six classifiers compared, is most optimal for land use/cover change detection analysis with a satisfying overall accuracy of 87.7%. With continuous free coverage of NAIP images, the optimal change detection procedure concluded in this study is valuable for future analyses of urban growth change detection in rural, forestry environments.","PeriodicalId":368300,"journal":{"name":"Int. J. Appl. Geospat. Res.","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Appl. Geospat. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJAGR.2019010102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Mapping land cover change is useful for various environmental and urban planning applications, e.g. land management, forest conservation, ecological assessment, transportation planning, and impervious surface control. As the optimal change detection approaches, algorithms, and parameters often depend on the phenomenon of interest and the remote sensing imagery used, the goal of this study is to find the optimal procedure for detecting urban growth in rural, forestry areas using one-meter, four-band NAIP images. Focusing on different types of impervious covers, the authors test the optimal segmentation parameters for object-based image analysis, and conclude that the random tree classifier, among the six classifiers compared, is most optimal for land use/cover change detection analysis with a satisfying overall accuracy of 87.7%. With continuous free coverage of NAIP images, the optimal change detection procedure concluded in this study is valuable for future analyses of urban growth change detection in rural, forestry environments.
利用NAIP图像检测森林湖滨环境中土地覆盖变化的最佳方法
绘制土地覆盖变化图对各种环境和城市规划应用非常有用,例如土地管理、森林保护、生态评估、交通规划和不透水地表控制。由于最优的变化检测方法、算法和参数往往取决于感兴趣的现象和所使用的遥感图像,因此本研究的目标是找到使用一米四波段NAIP图像检测农村、林业地区城市增长的最佳程序。针对不同类型的不透水覆盖物,对最优分割参数进行了测试,结果表明,随机树分类器在土地利用/覆被变化检测分析中的总体准确率为87.7%,是6种分类器中最优的。随着NAIP图像的持续免费覆盖,本研究得出的最优变化检测程序对未来农村、林业环境下的城市增长变化检测分析具有重要价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信