Andros Tjandra, S. Sakti, Graham Neubig, T. Toda, M. Adriani, Satoshi Nakamura
{"title":"Combination of two-dimensional cochleogram and spectrogram features for deep learning-based ASR","authors":"Andros Tjandra, S. Sakti, Graham Neubig, T. Toda, M. Adriani, Satoshi Nakamura","doi":"10.1109/ICASSP.2015.7178827","DOIUrl":null,"url":null,"abstract":"This paper explores the use of auditory features based on cochleograms; two dimensional speech features derived from gammatone filters within the convolutional neural network (CNN) framework. Furthermore, we also propose various possibilities to combine cochleogram features with log-mel filter banks or spectrogram features. In particular, we combine within low and high levels of CNN framework which we refer to as low-level and high-level feature combination. As comparison, we also construct the similar configuration with deep neural network (DNN). Performance was evaluated in the framework of hybrid neural network - hidden Markov model (NN-HMM) system on TIMIT phoneme sequence recognition task. The results reveal that cochleogram-spectrogram feature combination provides significant advantages. The best accuracy was obtained by high-level combination of two dimensional cochleogram-spectrogram features using CNN, achieved up to 8.2% relative phoneme error rate (PER) reduction from CNN single features or 19.7% relative PER reduction from DNN single features.","PeriodicalId":117666,"journal":{"name":"2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2015.7178827","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20
Abstract
This paper explores the use of auditory features based on cochleograms; two dimensional speech features derived from gammatone filters within the convolutional neural network (CNN) framework. Furthermore, we also propose various possibilities to combine cochleogram features with log-mel filter banks or spectrogram features. In particular, we combine within low and high levels of CNN framework which we refer to as low-level and high-level feature combination. As comparison, we also construct the similar configuration with deep neural network (DNN). Performance was evaluated in the framework of hybrid neural network - hidden Markov model (NN-HMM) system on TIMIT phoneme sequence recognition task. The results reveal that cochleogram-spectrogram feature combination provides significant advantages. The best accuracy was obtained by high-level combination of two dimensional cochleogram-spectrogram features using CNN, achieved up to 8.2% relative phoneme error rate (PER) reduction from CNN single features or 19.7% relative PER reduction from DNN single features.