Hydrogen Embrittled Hydraulic Cylinders

Stuart M. Myron
{"title":"Hydrogen Embrittled Hydraulic Cylinders","authors":"Stuart M. Myron","doi":"10.31399/asm.fach.process.c9001520","DOIUrl":null,"url":null,"abstract":"\n Two types of chromium-plated hydraulic cylinders failed by cracking on their outer surfaces. In one case, the parts had a history of cracking in the nominally unstressed, as-fabricated condition. In another, cracks were detected after the cylinders were subjected to a pressure impulse test. Both part types were made of 15-5 PH (UNS S15500) precipitation hardening stainless steel. Hydrogen embrittlement cracking was the likely cause of failure for both part types. Cracking of the as-fabricated parts was ultimately prevented by changing the manufacturing procedure to allow for a reheat treatment. For parts that cracked after pressure testing, excessive dimensional changes precluded the inclusion of a reheat treatment as a manufacturing step, and further failure was averted by carefully employing proper machining practices, avoiding abusive machining.","PeriodicalId":294593,"journal":{"name":"ASM Failure Analysis Case Histories: Processing Errors and Defects","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASM Failure Analysis Case Histories: Processing Errors and Defects","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31399/asm.fach.process.c9001520","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Two types of chromium-plated hydraulic cylinders failed by cracking on their outer surfaces. In one case, the parts had a history of cracking in the nominally unstressed, as-fabricated condition. In another, cracks were detected after the cylinders were subjected to a pressure impulse test. Both part types were made of 15-5 PH (UNS S15500) precipitation hardening stainless steel. Hydrogen embrittlement cracking was the likely cause of failure for both part types. Cracking of the as-fabricated parts was ultimately prevented by changing the manufacturing procedure to allow for a reheat treatment. For parts that cracked after pressure testing, excessive dimensional changes precluded the inclusion of a reheat treatment as a manufacturing step, and further failure was averted by carefully employing proper machining practices, avoiding abusive machining.
氢脆液压缸
两种镀铬液压缸因外表面开裂而失效。在一种情况下,零件在名义上无应力的制造条件下有开裂的历史。在另一项试验中,在钢瓶经受压力冲击试验后检测到裂纹。两种零件类型均采用15-5 PH (UNS S15500)沉淀硬化不锈钢。氢脆开裂是这两种零件失效的可能原因。通过改变制造工艺,允许再热处理,最终防止了制造零件的开裂。对于在压力测试后破裂的零件,过大的尺寸变化排除了作为制造步骤的再热处理,并且通过仔细采用适当的加工方法避免了进一步的故障,避免了滥用加工。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信