Economic Recession Prediction Using Deep Neural Network

Zihao Wang, Kun Li, Steve Q. Xia, Hongfu Liu
{"title":"Economic Recession Prediction Using Deep Neural Network","authors":"Zihao Wang, Kun Li, Steve Q. Xia, Hongfu Liu","doi":"10.3905/jfds.2022.1.097","DOIUrl":null,"url":null,"abstract":"We investigate the effectiveness of different machine learning methodologies in predicting economic cycles. We identify the deep learning methodology of BiLSTM with autoencoder as the most accurate model to forecast the beginning and end of economic recessions in the United States. We adopt commonly available macro and market-condition features to compare the ability of different machine learning models to generate good predictions both in-sample and out-of-sample. The proposed model is flexible and dynamic when both predictive variables and model coefficients vary over time. It provided good out-of-sample predictions for the past two recessions and early warning about the COVID-19 recession.","PeriodicalId":199045,"journal":{"name":"The Journal of Financial Data Science","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Financial Data Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3905/jfds.2022.1.097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We investigate the effectiveness of different machine learning methodologies in predicting economic cycles. We identify the deep learning methodology of BiLSTM with autoencoder as the most accurate model to forecast the beginning and end of economic recessions in the United States. We adopt commonly available macro and market-condition features to compare the ability of different machine learning models to generate good predictions both in-sample and out-of-sample. The proposed model is flexible and dynamic when both predictive variables and model coefficients vary over time. It provided good out-of-sample predictions for the past two recessions and early warning about the COVID-19 recession.
利用深度神经网络预测经济衰退
我们研究了不同机器学习方法在预测经济周期方面的有效性。我们将带有自动编码器的BiLSTM深度学习方法确定为预测美国经济衰退开始和结束的最准确模型。我们采用常用的宏观和市场条件特征来比较不同机器学习模型在样本内和样本外产生良好预测的能力。当预测变量和模型系数随时间变化时,所提出的模型具有灵活性和动态性。它为过去两次经济衰退提供了良好的样本外预测,并为COVID-19经济衰退提供了早期预警。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信