Pewarnaan Sisi Ketakteraturan Lokal Refleksif pada Keluarga Graf Planar

Nuwaila Izzatul Muttaqi, Dafik Dafik, R. adawiyah
{"title":"Pewarnaan Sisi Ketakteraturan Lokal Refleksif pada Keluarga Graf Planar","authors":"Nuwaila Izzatul Muttaqi, Dafik Dafik, R. adawiyah","doi":"10.25037/cgantjma.v3i2.83","DOIUrl":null,"url":null,"abstract":"All graph in this paper is simple and connected graph where $V(G)$ is vertex set and $E(G)$ is edge set. Let function $f : V(G)\\longrightarrow \\{0, 2,..., 2k_v\\}$ as vertex labeling and a function $f: E(G)\\longrightarrow \\{1, 2,..., k_e\\}$ as edge labeling where $k=max\\{2k_v,k_e\\}$ for $k_v,k_e$ are natural number. The weight of edge $ u,v\\in E(G) $ under $f$ is $w(u)=f(u)+ \\Sigma_{uv \\in V(G)} f(uv)$. In other words, the function $f$ is called local edge irregular reflexive labeling if every two adjacent edges has distinct weight and weight of a edge is defined as the sum of the labels of edge and the labels of all vertex incident this edge When we assign each edge of $G$ with a color of the edge weight $w(uv)$, thus we say the graph $G$ admits a local edge irregular reflexive coloring. The minimum number of colors produced from local edge irregular reflexive coloring of graph $G$ is reflexive local irregular chromatic number denoted by $\\chi_{lrecs}(G).$ Furthermore, the minimum $k$ required such that $\\chi_{lrecs}(G)=\\chi(G)$ is called a local reflexive edge color strength, denoted by \\emph{lrecs}$(G)$. In this paper, we learn about the local edge irregular reflexive coloring and obtain \\emph{lrecs}$(G)$ of planar related graphs.","PeriodicalId":305608,"journal":{"name":"CGANT JOURNAL OF MATHEMATICS AND APPLICATIONS","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CGANT JOURNAL OF MATHEMATICS AND APPLICATIONS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25037/cgantjma.v3i2.83","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

All graph in this paper is simple and connected graph where $V(G)$ is vertex set and $E(G)$ is edge set. Let function $f : V(G)\longrightarrow \{0, 2,..., 2k_v\}$ as vertex labeling and a function $f: E(G)\longrightarrow \{1, 2,..., k_e\}$ as edge labeling where $k=max\{2k_v,k_e\}$ for $k_v,k_e$ are natural number. The weight of edge $ u,v\in E(G) $ under $f$ is $w(u)=f(u)+ \Sigma_{uv \in V(G)} f(uv)$. In other words, the function $f$ is called local edge irregular reflexive labeling if every two adjacent edges has distinct weight and weight of a edge is defined as the sum of the labels of edge and the labels of all vertex incident this edge When we assign each edge of $G$ with a color of the edge weight $w(uv)$, thus we say the graph $G$ admits a local edge irregular reflexive coloring. The minimum number of colors produced from local edge irregular reflexive coloring of graph $G$ is reflexive local irregular chromatic number denoted by $\chi_{lrecs}(G).$ Furthermore, the minimum $k$ required such that $\chi_{lrecs}(G)=\chi(G)$ is called a local reflexive edge color strength, denoted by \emph{lrecs}$(G)$. In this paper, we learn about the local edge irregular reflexive coloring and obtain \emph{lrecs}$(G)$ of planar related graphs.
反射性地域疾病的阴影
文中所有图都是简单连通图,其中$V(G)$为顶点集,$E(G)$为边集。设函数$f : V(G)\longrightarrow \{0, 2,..., 2k_v\}$为顶点标号,函数$f: E(G)\longrightarrow \{1, 2,..., k_e\}$为边标号,其中$k_v,k_e$中的$k=max\{2k_v,k_e\}$为自然数。$f$下的边$ u,v\in E(G) $的权值为$w(u)=f(u)+ \Sigma_{uv \in V(G)} f(uv)$。换句话说,如果相邻的两条边都有不同的权值,并且一条边的权值定义为这条边的标签和所有与这条边相关的顶点的标签之和,那么函数$f$被称为局部边不规则自反标记。当我们为$G$的每条边赋予一个边权值$w(uv)$的颜色时,我们说图$G$允许局部边不规则自反着色。图$G$的局部边缘不规则自反着色所产生的最小颜色数为自反局部不规则色数,记为$\chi_{lrecs}(G).$。进而,使$\chi_{lrecs}(G)=\chi(G)$成为局部自反边缘颜色强度所需的最小$k$,记为\emph{lrecs}$(G)$。本文学习了平面相关图的局部边缘不规则自反着色,得到了平面相关图的\emph{lrecs}$(G)$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信