A Mixed Unsupervised Clustering-Based Intrusion Detection Model

Cuixiao Zhang, Guobing Zhang, Shanshan Sun
{"title":"A Mixed Unsupervised Clustering-Based Intrusion Detection Model","authors":"Cuixiao Zhang, Guobing Zhang, Shanshan Sun","doi":"10.1109/WGEC.2009.72","DOIUrl":null,"url":null,"abstract":"Through analyzing the advantages and disadvantages between anomaly detection and misuse detection, a mixed intrusion detection system (IDS) model is designed. First, data is examined by the misuse detection module, then abnormal data detection is examined by anomaly detection module. In this model, the anomaly detection module is built using unsupervised clustering method, and the algorithm is an improved algorithm of K-means clustering algorithm and it is proved to have high detection rate in the anomaly detection module.","PeriodicalId":277950,"journal":{"name":"2009 Third International Conference on Genetic and Evolutionary Computing","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Third International Conference on Genetic and Evolutionary Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WGEC.2009.72","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

Abstract

Through analyzing the advantages and disadvantages between anomaly detection and misuse detection, a mixed intrusion detection system (IDS) model is designed. First, data is examined by the misuse detection module, then abnormal data detection is examined by anomaly detection module. In this model, the anomaly detection module is built using unsupervised clustering method, and the algorithm is an improved algorithm of K-means clustering algorithm and it is proved to have high detection rate in the anomaly detection module.
基于混合无监督聚类的入侵检测模型
通过分析异常检测和误用检测的优缺点,设计了一种混合入侵检测系统模型。首先通过误用检测模块对数据进行检测,然后通过异常检测模块对异常数据进行检测。在该模型中,采用无监督聚类方法构建异常检测模块,该算法是k均值聚类算法的改进算法,在异常检测模块中被证明具有较高的检测率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信