A note on the unique solvability condition for generalized absolute value matrix equation

Shubham Kumar, .. Deepmala
{"title":"A note on the unique solvability condition for generalized absolute value matrix equation","authors":"Shubham Kumar, .. Deepmala","doi":"10.33993/jnaat511-1263","DOIUrl":null,"url":null,"abstract":"The spectral radius condition \\[\\rho (\\vert A^{-1} \\vert\\cdot \\vert B \\vert)<1\\]for the unique solvability of generalized absolute value matrix equation (GAVME) \\[AX + B \\vert X \\vert = D\\] is provided. For some instances, our condition is superior to the earlier published singular values conditions \\(\\sigma_{\\max}(\\vert B \\vert)<\\sigma_{\\min}(A)\\) [M. Dehghan, 2020] and \\(\\sigma_{\\max}(B)<\\sigma_{\\min}(A)\\) [Kai Xie, 2021]. For the validity of our condition, we also provided an example.","PeriodicalId":287022,"journal":{"name":"Journal of Numerical Analysis and Approximation Theory","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Numerical Analysis and Approximation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33993/jnaat511-1263","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The spectral radius condition \[\rho (\vert A^{-1} \vert\cdot \vert B \vert)<1\]for the unique solvability of generalized absolute value matrix equation (GAVME) \[AX + B \vert X \vert = D\] is provided. For some instances, our condition is superior to the earlier published singular values conditions \(\sigma_{\max}(\vert B \vert)<\sigma_{\min}(A)\) [M. Dehghan, 2020] and \(\sigma_{\max}(B)<\sigma_{\min}(A)\) [Kai Xie, 2021]. For the validity of our condition, we also provided an example.
关于广义绝对值矩阵方程唯一可解条件的注记
给出了广义绝对值矩阵方程(GAVME)唯一可解的谱半径条件\[\rho (\vert A^{-1} \vert\cdot \vert B \vert)<1\]\[AX + B \vert X \vert = D\]。在某些情况下,我们的条件优于先前发表的奇异值条件\(\sigma_{\max}(\vert B \vert)<\sigma_{\min}(A)\) [M]。dehhan, 2020]和\(\sigma_{\max}(B)<\sigma_{\min}(A)\)[谢凯,2021]。为了证明我们的条件的有效性,我们还提供了一个例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信