Predictive Analysis of Soil Parameters for Solar-Powered Smart Irrigation System

D. Vrishti, B. Samiksha, S. Rahul, P. Jayesh, M. Palak, A. Sheikh
{"title":"Predictive Analysis of Soil Parameters for Solar-Powered Smart Irrigation System","authors":"D. Vrishti, B. Samiksha, S. Rahul, P. Jayesh, M. Palak, A. Sheikh","doi":"10.1109/gpecom55404.2022.9815686","DOIUrl":null,"url":null,"abstract":"Agriculture is the backbone of any economy. More than 70% of households depend on farming to provide a living, making advancements in farming technologies are necessary. Irrigation is the most crucial and defining parameter for producing a healthy yield lack thereof can cause draught and low produce. On the flip side, over-irrigation causes deterioration of soil properties hence affecting the yield growth. An IoT-based irrigation system that integrates automation with the traditional irrigation system helps overcome these drawbacks. The paper primarily focuses on developing an intelligent system through Deep Learning Algorithms. Using Recurrent Neural Network (RNN), Gated Recurrent Unit (GRU), and Long Short Term Memory (LSTM) models of deep learning, the paper proposes a strategy to establish a system that can operate automatically through the forecasted data.","PeriodicalId":441321,"journal":{"name":"2022 4th Global Power, Energy and Communication Conference (GPECOM)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 4th Global Power, Energy and Communication Conference (GPECOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/gpecom55404.2022.9815686","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Agriculture is the backbone of any economy. More than 70% of households depend on farming to provide a living, making advancements in farming technologies are necessary. Irrigation is the most crucial and defining parameter for producing a healthy yield lack thereof can cause draught and low produce. On the flip side, over-irrigation causes deterioration of soil properties hence affecting the yield growth. An IoT-based irrigation system that integrates automation with the traditional irrigation system helps overcome these drawbacks. The paper primarily focuses on developing an intelligent system through Deep Learning Algorithms. Using Recurrent Neural Network (RNN), Gated Recurrent Unit (GRU), and Long Short Term Memory (LSTM) models of deep learning, the paper proposes a strategy to establish a system that can operate automatically through the forecasted data.
太阳能智能灌溉系统土壤参数预测分析
农业是任何经济的支柱。70%以上的家庭依靠农业为生,因此农业技术的进步是必要的。灌溉是生产健康产量的最关键和决定性参数,缺乏灌溉会导致干旱和低产量。另一方面,过度灌溉会导致土壤性质恶化,从而影响产量的增长。基于物联网的灌溉系统将自动化与传统灌溉系统相结合,有助于克服这些缺点。本文主要关注通过深度学习算法开发智能系统。利用深度学习中的递归神经网络(RNN)、门控递归单元(GRU)和长短期记忆(LSTM)模型,提出了一种通过预测数据建立自动运行系统的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信