Gaussian Approximations and Related Questions for the Spacings process

G. Lo
{"title":"Gaussian Approximations and Related Questions for the Spacings process","authors":"G. Lo","doi":"10.16929/sbs/2018.100-04-05","DOIUrl":null,"url":null,"abstract":"All the available results on the approximation of the k-spacings process to Gaussian processes have only used one approach, that is the Shorack and Pyke's one. Here, it is shown that this approach cannot yield a rate better than $% \\left( N/\\log \\log N\\right) ^{-\\frac{1}{4}}\\left( \\log N\\right) ^{\\frac{1}{2}% }$. Strong and weak bounds for that rate are specified both where k is fixed and where $k\\rightarrow +\\infty $. A Glivenko-Cantelli Theorem is given while Stute's result for the increments of the empirical process based on independent and indentically distributed random variables is extended to the spacings process. One of the Mason-Wellner-Shorack cases is also obtained.","PeriodicalId":321019,"journal":{"name":"A Collection of Papers in Mathematics and Related Sciences, a festschrift in honour of the late Galaye Dia","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"A Collection of Papers in Mathematics and Related Sciences, a festschrift in honour of the late Galaye Dia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.16929/sbs/2018.100-04-05","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

All the available results on the approximation of the k-spacings process to Gaussian processes have only used one approach, that is the Shorack and Pyke's one. Here, it is shown that this approach cannot yield a rate better than $% \left( N/\log \log N\right) ^{-\frac{1}{4}}\left( \log N\right) ^{\frac{1}{2}% }$. Strong and weak bounds for that rate are specified both where k is fixed and where $k\rightarrow +\infty $. A Glivenko-Cantelli Theorem is given while Stute's result for the increments of the empirical process based on independent and indentically distributed random variables is extended to the spacings process. One of the Mason-Wellner-Shorack cases is also obtained.
间隔过程的高斯近似及相关问题
所有关于k间隔过程近似高斯过程的可用结果都只使用了一种方法,即Shorack和Pyke的方法。在这里,证明了这种方法不能产生优于$% \left(N/\log \log N\right) ^{-\frac{1}{4}}\left(\log N\right) ^{\frac{1}{2}%}$的比率。该比率的强边界和弱边界都是指定的,其中k是固定的,并且$k\右拐+ $右拐+ $右拐。本文给出了Glivenko-Cantelli定理,并将Stute关于基于独立和等分布随机变量的经验过程增量的结果推广到间隔过程。还得到了梅森-韦纳-肖拉克案例中的一个。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信