A Mutli-objective Evolutionary Algorithm with Adaptive Parallel Region Decomposition

Hongyan Chen, Hai-Lin Liu, Fangqing Gu, Lei Chen
{"title":"A Mutli-objective Evolutionary Algorithm with Adaptive Parallel Region Decomposition","authors":"Hongyan Chen, Hai-Lin Liu, Fangqing Gu, Lei Chen","doi":"10.1109/ICACI52617.2021.9435909","DOIUrl":null,"url":null,"abstract":"Decomposition-based evolutionary multiobjective algorithms achieve good performance for solving the problems with regular Pareto fronts. Nevertheless, the shape of the Pareto front greatly influences the performance of the algorithms. Thus, we propose a new adaptive parallel region decomposition strategy. Different from the traditional decomposition-based methods, the proposed algorithm decomposes a multiobjective optimization problem into a number of subproblems by different ideal points, but not by different weight vectors. We compare the proposed algorithm with four state-of-the-art algorithms on seven test problems with irregular Pareto fronts. Experimental results show that the proposed algorithm has superior robustness on the optimization problems with irregular Pareto fronts.","PeriodicalId":382483,"journal":{"name":"2021 13th International Conference on Advanced Computational Intelligence (ICACI)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 13th International Conference on Advanced Computational Intelligence (ICACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACI52617.2021.9435909","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Decomposition-based evolutionary multiobjective algorithms achieve good performance for solving the problems with regular Pareto fronts. Nevertheless, the shape of the Pareto front greatly influences the performance of the algorithms. Thus, we propose a new adaptive parallel region decomposition strategy. Different from the traditional decomposition-based methods, the proposed algorithm decomposes a multiobjective optimization problem into a number of subproblems by different ideal points, but not by different weight vectors. We compare the proposed algorithm with four state-of-the-art algorithms on seven test problems with irregular Pareto fronts. Experimental results show that the proposed algorithm has superior robustness on the optimization problems with irregular Pareto fronts.
一种自适应并行区域分解的多目标进化算法
基于分解的进化多目标算法对于正则Pareto前沿问题的求解具有良好的性能。然而,帕累托锋的形状极大地影响了算法的性能。因此,我们提出了一种新的自适应并行区域分解策略。与传统的基于分解的方法不同,该算法将多目标优化问题按不同的理想点分解为若干子问题,而不是按不同的权向量分解。我们将提出的算法与四种最先进的算法在七个不规则Pareto前沿的测试问题上进行了比较。实验结果表明,该算法对不规则Pareto前优化问题具有较好的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信