Mismatched encoding in rate distortion theory

A. Lapidoth
{"title":"Mismatched encoding in rate distortion theory","authors":"A. Lapidoth","doi":"10.1109/WITS.1994.513896","DOIUrl":null,"url":null,"abstract":"Summary form only given. A length n block code C of size 2/sup nR/ over a finite alphabet /spl chi//spl circ//sub 0/ is used to encode a memoryless source over a finite alphabet /spl chi/. A length n source sequence x is described by the index i of the codeword x/spl circ//sub 0/(i) that is nearest to x according to the single-letter distortion function d/sub 0/(x,x/spl circ//sub 0/). Based on the description i and the knowledge of the codebook C, we wish to reconstruct the source sequence so as to minimize the average distortion defined by the distortion function d/sub 1/(x,x/spl circ//sub 1/), where d/sub 1/(x, x/spl circ//sub 1/) is in general different from d/sub 0/(x,x/spl circ//sub 0/). In fact, the reconstruction alphabets /spl chi//spl circ//sub 0/ and /spl chi//spl circ//sub 1/ could be different. We study the minimum, over all codebooks C, of the average distortion between the reconstructed sequence x/spl circ//sub 1/(i) and the source sequence x as the blocklength n tends to infinity. This limit is a function of the code rate R, the source's probability law, and the two distortion measures d/sub 0/(x,x/spl circ//sub 0/), and d/sub 1/(x,x/spl circ//sub 1/). This problem is the rate-distortion dual of the problem of determining the capacity of a memoryless channel under a possibly suboptimal decoding rule. The performance of a random i.i.d. codebook is found, and it is shown that the performance of the \"average\" codebook is in general suboptimal.","PeriodicalId":423518,"journal":{"name":"Proceedings of 1994 Workshop on Information Theory and Statistics","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 Workshop on Information Theory and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WITS.1994.513896","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Summary form only given. A length n block code C of size 2/sup nR/ over a finite alphabet /spl chi//spl circ//sub 0/ is used to encode a memoryless source over a finite alphabet /spl chi/. A length n source sequence x is described by the index i of the codeword x/spl circ//sub 0/(i) that is nearest to x according to the single-letter distortion function d/sub 0/(x,x/spl circ//sub 0/). Based on the description i and the knowledge of the codebook C, we wish to reconstruct the source sequence so as to minimize the average distortion defined by the distortion function d/sub 1/(x,x/spl circ//sub 1/), where d/sub 1/(x, x/spl circ//sub 1/) is in general different from d/sub 0/(x,x/spl circ//sub 0/). In fact, the reconstruction alphabets /spl chi//spl circ//sub 0/ and /spl chi//spl circ//sub 1/ could be different. We study the minimum, over all codebooks C, of the average distortion between the reconstructed sequence x/spl circ//sub 1/(i) and the source sequence x as the blocklength n tends to infinity. This limit is a function of the code rate R, the source's probability law, and the two distortion measures d/sub 0/(x,x/spl circ//sub 0/), and d/sub 1/(x,x/spl circ//sub 1/). This problem is the rate-distortion dual of the problem of determining the capacity of a memoryless channel under a possibly suboptimal decoding rule. The performance of a random i.i.d. codebook is found, and it is shown that the performance of the "average" codebook is in general suboptimal.
码率失真理论中的不匹配编码
只提供摘要形式。长度为n的块码C在有限字母表/spl chi//spl circ//sub 0/上编码一个有限字母表/spl chi/上的无内存源。根据单字母失真函数d/sub 0/(x,x/spl circ//sub 0/),用最接近x的码字x/spl circ//sub 0/(i)的索引i来描述长度为n的源序列x。基于描述i和码本C的知识,我们希望重构源序列,以最小化由失真函数d/sub 1/(x,x/spl circ//sub 1/)定义的平均失真,其中d/sub 1/(x,x/spl circ//sub 1/)通常不同于d/sub 0/(x,x/spl circ//sub 0/)。事实上,重建字母/spl chi//spl circ//sub 0/和/spl chi//spl circ//sub 1/可以是不同的。我们研究了在所有码本C上,当块长度n趋于无穷时重构序列x/spl circ//sub 1/(i)与源序列x之间的平均失真的最小值。这个极限是码率R、源的概率律和两个失真量d/sub 0/(x,x/spl circ//sub 0/)和d/sub 1/(x,x/spl circ//sub 1/)的函数。这个问题是在可能的次优解码规则下确定无记忆信道容量问题的速率失真对偶。找到了一个随机id码本的性能,并且表明“平均”码本的性能通常是次优的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信