Localization and classification of membrane dynamics in TIRF microscopy image sequences

A. Basset, P. Bouthemy, J. Boulanger, J. Salamero, C. Kervrann
{"title":"Localization and classification of membrane dynamics in TIRF microscopy image sequences","authors":"A. Basset, P. Bouthemy, J. Boulanger, J. Salamero, C. Kervrann","doi":"10.1109/ISBI.2014.6867999","DOIUrl":null,"url":null,"abstract":"The detection of proteins and the classification of their temporal behaviors in live cell fluorescence microscopy are of utmost importance to understand cell mechanisms. In this paper, we aim at locating and recognizing temporal events in TIRF microscopy image sequences related to membrane dynamics. After segmenting the time-varying vesicles in the image, we exploit space-time information extracted from three successive images only to model, locate and recognize the two dynamic configurations of interest: translational motion or local fluorescence diffusion. A likelihood ratio test is defined to solve this issue. Results on synthetic and real TIRF sequences demonstrate the accuracy and efficiency of the proposed method.","PeriodicalId":440405,"journal":{"name":"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)","volume":"145 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2014.6867999","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

The detection of proteins and the classification of their temporal behaviors in live cell fluorescence microscopy are of utmost importance to understand cell mechanisms. In this paper, we aim at locating and recognizing temporal events in TIRF microscopy image sequences related to membrane dynamics. After segmenting the time-varying vesicles in the image, we exploit space-time information extracted from three successive images only to model, locate and recognize the two dynamic configurations of interest: translational motion or local fluorescence diffusion. A likelihood ratio test is defined to solve this issue. Results on synthetic and real TIRF sequences demonstrate the accuracy and efficiency of the proposed method.
TIRF显微图像序列中膜动力学的定位与分类
在活细胞荧光显微镜下检测蛋白质及其时间行为的分类对了解细胞机制至关重要。在本文中,我们旨在定位和识别与膜动力学相关的TIRF显微镜图像序列中的时间事件。在对图像中的时变囊泡进行分割后,我们利用从三个连续图像中提取的时空信息来建模、定位和识别两种感兴趣的动态结构:平移运动或局部荧光扩散。定义了似然比检验来解决这个问题。合成序列和真实序列的结果证明了该方法的准确性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信