Blind separation of sources applied to convolutive mixtures in shallow water

M. Gaeta, F. Briolle, P. Esparcieux
{"title":"Blind separation of sources applied to convolutive mixtures in shallow water","authors":"M. Gaeta, F. Briolle, P. Esparcieux","doi":"10.1109/HOST.1997.613543","DOIUrl":null,"url":null,"abstract":"In underwater acoustics, the signal received by sensors is a mixture of different elementary sources, filtered by the environment. In blind separation of sources, we can isolate each source from different mixtures of sources without any a priori information, except for assuming statistical independence of the different sources. Jutten and Herault (1991) proposed a neuromimetic solution to the problem. In our work, we use this solution to separate convolutive mixtures of simulated complex underwater signals in a shallow water environment. To allow multipath identification a whitening step has to be introduced. We propose a local whitening procedure that does not impact the separated signal output and preserves the signal characteristics. This promising technique can be improved using non causal whitening filters more adapted to the target environment.","PeriodicalId":305928,"journal":{"name":"Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HOST.1997.613543","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

In underwater acoustics, the signal received by sensors is a mixture of different elementary sources, filtered by the environment. In blind separation of sources, we can isolate each source from different mixtures of sources without any a priori information, except for assuming statistical independence of the different sources. Jutten and Herault (1991) proposed a neuromimetic solution to the problem. In our work, we use this solution to separate convolutive mixtures of simulated complex underwater signals in a shallow water environment. To allow multipath identification a whitening step has to be introduced. We propose a local whitening procedure that does not impact the separated signal output and preserves the signal characteristics. This promising technique can be improved using non causal whitening filters more adapted to the target environment.
浅水中卷积混合源的盲分离
在水下声学中,传感器接收到的信号是不同基本源的混合,经过环境过滤。在盲源分离中,除了假设不同源的统计独立性外,我们可以在没有任何先验信息的情况下从不同的源混合物中分离出每个源。Jutten和Herault(1991)提出了一种神经模拟的解决方案。在我们的工作中,我们使用该解决方案在浅水环境中分离模拟复杂水下信号的卷积混合物。为了允许多路径识别,必须引入一个白化步骤。我们提出了一种不影响分离信号输出并保持信号特征的局部白化方法。这种有前途的技术可以使用更适应目标环境的非因果美白滤波器来改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信