The Shapley Value in Database Management

L. Bertossi, B. Kimelfeld, Ester Livshits, Mikaël Monet
{"title":"The Shapley Value in Database Management","authors":"L. Bertossi, B. Kimelfeld, Ester Livshits, Mikaël Monet","doi":"10.1145/3615952.3615954","DOIUrl":null,"url":null,"abstract":"Attribution scores can be applied in data management to quantify the contribution of individual items to conclusions from the data, as part of the explanation of what led to these conclusions. In Artificial Intelligence, Machine Learning, and Data Management, some of the common scores are deployments of the Shapley value, a formula for profit sharing in cooperative game theory. Since its invention in the 1950s, the Shapley value has been used for contribution measurement in many fields, from economics to law, with its latest researched applications in modern machine learning. Recent studies investigated the application of the Shapley value to database management. This article gives an overview of recent results on the computational complexity of the Shapley value for measuring the contribution of tuples to query answers and to the extent of inconsistency with respect to integrity constraints. More specifically, the article highlights lower and upper bounds on the complexity of calculating the Shapley value, either exactly or approximately, as well as solutions for realizing the calculation in practice.","PeriodicalId":346332,"journal":{"name":"ACM SIGMOD Record","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGMOD Record","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3615952.3615954","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Attribution scores can be applied in data management to quantify the contribution of individual items to conclusions from the data, as part of the explanation of what led to these conclusions. In Artificial Intelligence, Machine Learning, and Data Management, some of the common scores are deployments of the Shapley value, a formula for profit sharing in cooperative game theory. Since its invention in the 1950s, the Shapley value has been used for contribution measurement in many fields, from economics to law, with its latest researched applications in modern machine learning. Recent studies investigated the application of the Shapley value to database management. This article gives an overview of recent results on the computational complexity of the Shapley value for measuring the contribution of tuples to query answers and to the extent of inconsistency with respect to integrity constraints. More specifically, the article highlights lower and upper bounds on the complexity of calculating the Shapley value, either exactly or approximately, as well as solutions for realizing the calculation in practice.
数据库管理中的Shapley值
归因分数可以应用于数据管理,以量化单个项目对数据结论的贡献,作为解释导致这些结论的原因的一部分。在人工智能、机器学习和数据管理中,一些常见的分数是Shapley值的部署,Shapley值是合作博弈论中利润分享的公式。自20世纪50年代发明以来,沙普利值已被用于从经济学到法律等许多领域的贡献衡量,其最新研究应用于现代机器学习。最近的研究调查了Shapley值在数据库管理中的应用。本文概述了Shapley值的计算复杂性的最新结果,Shapley值用于测量元组对查询答案的贡献,以及完整性约束不一致的程度。更具体地说,本文强调了Shapley值精确或近似计算复杂性的下界和上界,以及在实践中实现计算的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信