Phenotypic genetic algorithm for partitioning problem

K. Tagawa, T. Fukui, H. Haneda
{"title":"Phenotypic genetic algorithm for partitioning problem","authors":"K. Tagawa, T. Fukui, H. Haneda","doi":"10.1109/ICEC.1997.592372","DOIUrl":null,"url":null,"abstract":"The paper presents a phenotype based genetic algorithm for solving a partitioning problem, which is partitioning N objects into P groups to optimize an objective function. In the genetic algorithm, a phenotypic individual is represented by a way of division of a suffix set {1,...,N} into P subsets. In order to prevent premature convergence, the paper defines a distance between phenotypic individuals and uses it in the adaptive control of crossover rate. Furthermore, the paper proposes a new crossover operation named weighted edge crossover which preserves both the structure of phenotype and the desirable character of parents. These techniques perform well on a test problem: multiprocessor scheduling problem for robot control computation.","PeriodicalId":167852,"journal":{"name":"Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEC.1997.592372","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The paper presents a phenotype based genetic algorithm for solving a partitioning problem, which is partitioning N objects into P groups to optimize an objective function. In the genetic algorithm, a phenotypic individual is represented by a way of division of a suffix set {1,...,N} into P subsets. In order to prevent premature convergence, the paper defines a distance between phenotypic individuals and uses it in the adaptive control of crossover rate. Furthermore, the paper proposes a new crossover operation named weighted edge crossover which preserves both the structure of phenotype and the desirable character of parents. These techniques perform well on a test problem: multiprocessor scheduling problem for robot control computation.
分区问题的表型遗传算法
本文提出了一种基于表型的遗传算法来解决划分问题,即将N个对象划分为P组以优化目标函数。在遗传算法中,一个表型个体用后缀集{1,…,N}分成P个子集。为了防止过早收敛,本文定义了表型个体之间的距离,并将其用于交叉率的自适应控制。在此基础上,提出了一种既保留表型结构又保留亲本理想性状的加权边交叉操作。这些技术在机器人控制计算的多处理器调度问题上表现良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信