Regulating gene expression using optimal control theory

Yunlong Liu, H. Sun, H. Yokota
{"title":"Regulating gene expression using optimal control theory","authors":"Yunlong Liu, H. Sun, H. Yokota","doi":"10.1109/BIBE.2003.1188968","DOIUrl":null,"url":null,"abstract":"We described development of a novel genome-based model-driven strategy useful for regulating eukaryotic gene expression. In order to extract biologically meaningful information from a large volume of mRNA expression data, we built previously a PROmoter-Based Estimation (PROBE) model. The PROBE model allowed us to establish a quantitative relationship between transcription-factor binding motifs in regulatory DNA sequences and mRNA expression levels. Here, we extended PROBE formulation to derive an optimal control law for gene regulation. The responses to shear stress in human synovial cells were chosen as a model biological system, and the system dynamics was identified from the expression pattern of the genes involved in degradation and maintenance of extracellular matrix. In order to suppress the responses to mechanical stimuli, a Ricatti equation was solved and an admissible control law was derived. The approach presented here can be implemented in any biological process, and it would be useful to develop a transcription-mediated strategy for gene therapies and tissue engineering.","PeriodicalId":178814,"journal":{"name":"Third IEEE Symposium on Bioinformatics and Bioengineering, 2003. Proceedings.","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Third IEEE Symposium on Bioinformatics and Bioengineering, 2003. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBE.2003.1188968","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

We described development of a novel genome-based model-driven strategy useful for regulating eukaryotic gene expression. In order to extract biologically meaningful information from a large volume of mRNA expression data, we built previously a PROmoter-Based Estimation (PROBE) model. The PROBE model allowed us to establish a quantitative relationship between transcription-factor binding motifs in regulatory DNA sequences and mRNA expression levels. Here, we extended PROBE formulation to derive an optimal control law for gene regulation. The responses to shear stress in human synovial cells were chosen as a model biological system, and the system dynamics was identified from the expression pattern of the genes involved in degradation and maintenance of extracellular matrix. In order to suppress the responses to mechanical stimuli, a Ricatti equation was solved and an admissible control law was derived. The approach presented here can be implemented in any biological process, and it would be useful to develop a transcription-mediated strategy for gene therapies and tissue engineering.
利用最优控制理论调控基因表达
我们描述了一种新的基于基因组的模型驱动策略,可用于调节真核基因表达。为了从大量的mRNA表达数据中提取有生物学意义的信息,我们先前建立了一个基于启动子的估计(PROBE)模型。PROBE模型使我们能够建立调控DNA序列中转录因子结合基序与mRNA表达水平之间的定量关系。在这里,我们扩展了PROBE公式来推导基因调控的最优控制律。选择人滑膜细胞对剪切应力的响应作为模型生物系统,并从细胞外基质降解和维持相关基因的表达模式确定了系统动力学。为了抑制机械刺激的响应,求解了Ricatti方程,导出了容许控制律。这里提出的方法可以在任何生物过程中实施,它将有助于开发基因治疗和组织工程的转录介导策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信