A Faster Algorithm for Finding Tarski Fixed Points

John Fearnley, Rahul Savani
{"title":"A Faster Algorithm for Finding Tarski Fixed Points","authors":"John Fearnley, Rahul Savani","doi":"10.1145/3524044","DOIUrl":null,"url":null,"abstract":"Dang et al. have given an algorithm that can find a Tarski fixed point in a k-dimensional lattice of width n using O(log k n) queries [2]. Multiple authors have conjectured that this algorithm is optimal [2, 7], and indeed this has been proven for two-dimensional instances [7]. We show that these conjectures are false in dimension three or higher by giving an O(log2 n) query algorithm for the three-dimensional Tarski problem. We also give a new decomposition theorem for k-dimensional Tarski problems which, in combination with our new algorithm for three dimensions, gives an O(log2 ⌈k/3⌉ n) query algorithm for the k-dimensional problem.","PeriodicalId":154047,"journal":{"name":"ACM Transactions on Algorithms (TALG)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Algorithms (TALG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3524044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Dang et al. have given an algorithm that can find a Tarski fixed point in a k-dimensional lattice of width n using O(log k n) queries [2]. Multiple authors have conjectured that this algorithm is optimal [2, 7], and indeed this has been proven for two-dimensional instances [7]. We show that these conjectures are false in dimension three or higher by giving an O(log2 n) query algorithm for the three-dimensional Tarski problem. We also give a new decomposition theorem for k-dimensional Tarski problems which, in combination with our new algorithm for three dimensions, gives an O(log2 ⌈k/3⌉ n) query algorithm for the k-dimensional problem.
一种求Tarski不动点的快速算法
Dang等人给出了一种算法,该算法可以使用O(log k n)次查询在宽度为n的k维晶格中找到一个Tarski不动点[2]。多个作者推测该算法是最优的[2,7],并且确实在二维实例中得到了证明[7]。我们通过给出三维Tarski问题的O(log2 n)查询算法来证明这些猜想在三维或更高维度是错误的。我们还给出了k维Tarski问题的一个新的分解定理,该定理与我们的三维问题的新算法相结合,给出了k维问题的O(log2≤k/3≤n)查询算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信