Visual Localization of Wireless Capsule Endoscopes Aided by Artificial Neural Networks

George Dimas, Dimitrios K. Iakovidis, G. Ciuti, A. Karargyris, Anastasios Koulaouzidis
{"title":"Visual Localization of Wireless Capsule Endoscopes Aided by Artificial Neural Networks","authors":"George Dimas, Dimitrios K. Iakovidis, G. Ciuti, A. Karargyris, Anastasios Koulaouzidis","doi":"10.1109/CBMS.2017.67","DOIUrl":null,"url":null,"abstract":"Various modalities are used for the examination of the gastrointestinal (GI) tract. One such modality is Wireless Capsule Endoscopy (WCE), a non-invasive technique which consists of a swallowable color camera that enables the detection of GI pathology with only minimal patient discomfort. Currently, tracking of the capsule position is estimated in the 3D abdominal space, using radio-frequency (RF) triangulation. The RF triangulation technique, however, does not provide sufficient information about the location of the capsule along the GI lumen, and consequently, the localization of any possible abnormality. Recently, we proposed a geometric visual odometry (VO) method for the localization of the capsule in the GI lumen. In this paper, we extend this state-of-art method by exploiting an artificial neural network (ANN) to augment the geometric method and achieve higher localization accuracy. The results of this novel approach are validated with an in-vitro experiment that provides ground truth information about the location of the capsule. The mean absolute error obtained, for a distance of 19.6cm, is 0.79±0.51cm.","PeriodicalId":141105,"journal":{"name":"2017 IEEE 30th International Symposium on Computer-Based Medical Systems (CBMS)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 30th International Symposium on Computer-Based Medical Systems (CBMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS.2017.67","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Various modalities are used for the examination of the gastrointestinal (GI) tract. One such modality is Wireless Capsule Endoscopy (WCE), a non-invasive technique which consists of a swallowable color camera that enables the detection of GI pathology with only minimal patient discomfort. Currently, tracking of the capsule position is estimated in the 3D abdominal space, using radio-frequency (RF) triangulation. The RF triangulation technique, however, does not provide sufficient information about the location of the capsule along the GI lumen, and consequently, the localization of any possible abnormality. Recently, we proposed a geometric visual odometry (VO) method for the localization of the capsule in the GI lumen. In this paper, we extend this state-of-art method by exploiting an artificial neural network (ANN) to augment the geometric method and achieve higher localization accuracy. The results of this novel approach are validated with an in-vitro experiment that provides ground truth information about the location of the capsule. The mean absolute error obtained, for a distance of 19.6cm, is 0.79±0.51cm.
基于人工神经网络的无线胶囊内窥镜视觉定位
用于胃肠道检查的方法多种多样。其中一种方式是无线胶囊内窥镜(WCE),这是一种非侵入性技术,由一个可吞咽的彩色相机组成,可以在最小程度上减轻患者的不适的情况下检测胃肠道病理。目前,使用射频(RF)三角测量在三维腹部空间中估计胶囊位置。然而,射频三角测量技术不能提供关于囊沿胃肠道腔的位置的足够信息,因此也不能定位任何可能的异常。最近,我们提出了一种几何视觉测距(VO)方法来定位胃肠道腔内的囊。在本文中,我们通过利用人工神经网络(ANN)来扩展这种最先进的方法,以增强几何方法,从而获得更高的定位精度。这种新方法的结果通过体外实验验证,该实验提供了有关胶囊位置的地面真实信息。在距离为19.6cm时,得到的平均绝对误差为0.79±0.51cm。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信