{"title":"FogStore","authors":"H. Gupta, U. Ramachandran","doi":"10.1145/3210284.3210297","DOIUrl":null,"url":null,"abstract":"We design Fogstore, a key-value store for event-based systems, that exploits the concept of relevance to guarantee low-latency access to relevant data with strong consistency guarantees, while providing tolerance from geographically correlated failures. Distributed event-based processing pipelines are envisioned to utilize the resources of densely geo-distributed infrastructures for low-latency responses - enabling real-time applications. Increasing complexity of such applications results in higher dependence on state, which has driven the incorporation of state-management as a core functionality of contemporary stream processing engines a la Apache Flink and Samza. Processing components executing under the same context (like location) often produce information that may be relevant to others, thereby necessitating shared state and an out-of-band globally-accessible data-store. Efficient access to application state is critical for overall performance, thus centralized data-stores are not a viable option due to the high-latency of network traversals. On the other hand, a highly geo-distributed datastore with low-latency implemented with current key-value stores would necessitate degrading client expectation of consistency as per the PACELC theorem. In this paper we exploit the notion of contextual relevance of events (data) in situation-awareness applications - and offer differential consistency guarantees for clients based on their context. We highlight important systems concerns that may arise with a highly geo-distributed system and show how Fogstore's design tackles them. We present, in detail, a prototype implementation of Fogstore's mechanisms on Apache Cassandra and a performance evaluation. Our evaluations show that Fogstore is able to achieve the throughput of eventually consistent configurations while serving data with strong consistency to the contextually relevant clients.","PeriodicalId":412438,"journal":{"name":"Proceedings of the 12th ACM International Conference on Distributed and Event-based Systems","volume":"245 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 12th ACM International Conference on Distributed and Event-based Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3210284.3210297","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43
Abstract
We design Fogstore, a key-value store for event-based systems, that exploits the concept of relevance to guarantee low-latency access to relevant data with strong consistency guarantees, while providing tolerance from geographically correlated failures. Distributed event-based processing pipelines are envisioned to utilize the resources of densely geo-distributed infrastructures for low-latency responses - enabling real-time applications. Increasing complexity of such applications results in higher dependence on state, which has driven the incorporation of state-management as a core functionality of contemporary stream processing engines a la Apache Flink and Samza. Processing components executing under the same context (like location) often produce information that may be relevant to others, thereby necessitating shared state and an out-of-band globally-accessible data-store. Efficient access to application state is critical for overall performance, thus centralized data-stores are not a viable option due to the high-latency of network traversals. On the other hand, a highly geo-distributed datastore with low-latency implemented with current key-value stores would necessitate degrading client expectation of consistency as per the PACELC theorem. In this paper we exploit the notion of contextual relevance of events (data) in situation-awareness applications - and offer differential consistency guarantees for clients based on their context. We highlight important systems concerns that may arise with a highly geo-distributed system and show how Fogstore's design tackles them. We present, in detail, a prototype implementation of Fogstore's mechanisms on Apache Cassandra and a performance evaluation. Our evaluations show that Fogstore is able to achieve the throughput of eventually consistent configurations while serving data with strong consistency to the contextually relevant clients.