Turing in Quantumland

H. Buhrman
{"title":"Turing in Quantumland","authors":"H. Buhrman","doi":"10.1017/CBO9781107338579.004","DOIUrl":null,"url":null,"abstract":"We revisit the notion of a quantum Turing-machine, whose design is based on the laws of quantum mechanics. It turns out that such a machine is not more powerful, in the sense of computability, than the machine originally constructed by Turing. Quantum Turingmachines do not violate the Church-Turing thesis. The benefit of quantum computing lies in efficiency. Quantum computers appear to be more efficient, in time, than classical Turing-machines, however its exact additional computational power is unclear, as this question ties in with deep open problems in complexity theory. We will sketch where BQP, the quantum analogue of the complexity class P, resides in the realm of complexity classes.","PeriodicalId":139105,"journal":{"name":"Turing's Legacy","volume":"348 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turing's Legacy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/CBO9781107338579.004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We revisit the notion of a quantum Turing-machine, whose design is based on the laws of quantum mechanics. It turns out that such a machine is not more powerful, in the sense of computability, than the machine originally constructed by Turing. Quantum Turingmachines do not violate the Church-Turing thesis. The benefit of quantum computing lies in efficiency. Quantum computers appear to be more efficient, in time, than classical Turing-machines, however its exact additional computational power is unclear, as this question ties in with deep open problems in complexity theory. We will sketch where BQP, the quantum analogue of the complexity class P, resides in the realm of complexity classes.
图灵在量子世界
我们重新审视量子图灵机的概念,它的设计是基于量子力学的定律。事实证明,从可计算性的角度来看,这样的机器并不比图灵最初制造的机器更强大。量子图灵机不违反丘奇-图灵命题。量子计算的优势在于效率。随着时间的推移,量子计算机似乎比经典的图灵机更高效,然而,其确切的额外计算能力尚不清楚,因为这个问题与复杂性理论中的深度开放问题有关。我们将概述BQP(复杂性类P的量子模拟)在复杂性类领域中的位置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信