Hemorrhage control by short electrical pulses — In vivo experiments

G. Malki, O. Barnea, Y. Mandel
{"title":"Hemorrhage control by short electrical pulses — In vivo experiments","authors":"G. Malki, O. Barnea, Y. Mandel","doi":"10.1109/EEEI.2012.6377126","DOIUrl":null,"url":null,"abstract":"An internal hemorrhagic shock is one of the leading causes of death in the battlefield and other trauma events. However the application of direct pressure, as in the treatment of an external hemorrhage, is not possible. Most common techniques to achieve vasoconstriction are through heat; yet heating causes irreversible destruction of organ tissues. Therefore, there is a need for a non-thermal based technology for hemorrhage control. The current research describes, for the first, an attempt to reduce the amount of bleeding in animal model liver injuries by using electrical pulses treatment (EPT). In the experiments, which were performed on 28 rats and 14 rabbits, a short (25μs and 50μs) EPT was applied to the treatment groups and the amount of bleeding was compared to the non-treatment (NT) groups. A reduction of 60%, 36% and 44% in blood volume, was found in the 25μs-rats, 50μs-rats and 25μs-rabbits EPT groups, respectively (P<;0.001). Also, it was found that the hemorrhage control was not caused by the mechanical pressure applied by the electrodes, and there was no evidence for thermal coagulation. Further research is needed to fully expose the potential of this treatment and the modality for hemorrhage control in civilian and military settings.","PeriodicalId":177385,"journal":{"name":"2012 IEEE 27th Convention of Electrical and Electronics Engineers in Israel","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 27th Convention of Electrical and Electronics Engineers in Israel","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EEEI.2012.6377126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

An internal hemorrhagic shock is one of the leading causes of death in the battlefield and other trauma events. However the application of direct pressure, as in the treatment of an external hemorrhage, is not possible. Most common techniques to achieve vasoconstriction are through heat; yet heating causes irreversible destruction of organ tissues. Therefore, there is a need for a non-thermal based technology for hemorrhage control. The current research describes, for the first, an attempt to reduce the amount of bleeding in animal model liver injuries by using electrical pulses treatment (EPT). In the experiments, which were performed on 28 rats and 14 rabbits, a short (25μs and 50μs) EPT was applied to the treatment groups and the amount of bleeding was compared to the non-treatment (NT) groups. A reduction of 60%, 36% and 44% in blood volume, was found in the 25μs-rats, 50μs-rats and 25μs-rabbits EPT groups, respectively (P<;0.001). Also, it was found that the hemorrhage control was not caused by the mechanical pressure applied by the electrodes, and there was no evidence for thermal coagulation. Further research is needed to fully expose the potential of this treatment and the modality for hemorrhage control in civilian and military settings.
用短电脉冲控制出血。体内实验
内源性失血性休克是战场上和其他创伤事件中导致死亡的主要原因之一。然而,应用直接压力,如在治疗外出血,是不可能的。实现血管收缩最常见的技术是通过加热;然而,加热会对器官组织造成不可逆转的破坏。因此,需要一种非热的出血控制技术。目前的研究首次描述了使用电脉冲治疗(EPT)来减少动物模型肝损伤出血量的尝试。实验选用28只大鼠和14只家兔,分别给予治疗组短时间(25μs和50μs) EPT,并与未治疗组(NT)比较出血量。25μs大鼠、50μs大鼠和25μs家兔的血容量分别减少60%、36%和44% (P< 0.001)。此外,还发现出血控制不是由电极施加的机械压力引起的,也没有热凝的证据。需要进一步的研究来充分揭示这种治疗的潜力以及在民用和军事环境中控制出血的方式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信