Classification of angiosperms by gray-level co-occurrence matrix and combination of feedforward neural network with particle swarm optimization

Yuanyuan Tao, Meimei Shi, C. Lam
{"title":"Classification of angiosperms by gray-level co-occurrence matrix and combination of feedforward neural network with particle swarm optimization","authors":"Yuanyuan Tao, Meimei Shi, C. Lam","doi":"10.1109/ICDSP.2018.8631679","DOIUrl":null,"url":null,"abstract":"This study proposed an application of feedforward neural network (FNN) with particle swarm optimization(PSO) on angiosperms classification. We first collected petal images of three different angiosperm plants and each type contains 40 images. Second, we used gray-level co-occurrence matrix (GLCM) to extract texture features. Third, we used FNN as the classifier. Finally, we employed PSO to train the classifier. In the experiment, we utilized eight-fold cross validation techniques. The average sensitivity of our method is about 86%. This proposed method performs better than three genetic algorithm and simulated annealing.","PeriodicalId":218806,"journal":{"name":"2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2018.8631679","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This study proposed an application of feedforward neural network (FNN) with particle swarm optimization(PSO) on angiosperms classification. We first collected petal images of three different angiosperm plants and each type contains 40 images. Second, we used gray-level co-occurrence matrix (GLCM) to extract texture features. Third, we used FNN as the classifier. Finally, we employed PSO to train the classifier. In the experiment, we utilized eight-fold cross validation techniques. The average sensitivity of our method is about 86%. This proposed method performs better than three genetic algorithm and simulated annealing.
基于灰度共生矩阵和前馈神经网络与粒子群优化相结合的被子植物分类
提出了一种基于粒子群优化的前馈神经网络(FNN)在被子植物分类中的应用。我们首先收集了三种不同被子植物的花瓣图像,每种类型包含40张图像。其次,利用灰度共生矩阵(GLCM)提取纹理特征;第三,我们使用FNN作为分类器。最后,我们使用粒子群算法来训练分类器。在实验中,我们使用了8倍交叉验证技术。该方法的平均灵敏度约为86%。该方法优于三种遗传算法和模拟退火算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信