Probability Mass Functions

T. Donovan, R. Mickey
{"title":"Probability Mass Functions","authors":"T. Donovan, R. Mickey","doi":"10.1093/OSO/9780198841296.003.0008","DOIUrl":null,"url":null,"abstract":"This chapter focuses on probability mass functions. One of the primary uses of Bayesian inference is to estimate parameters. To do so, it is necessary to first build a good understanding of probability distributions. This chapter introduces the idea of a random variable and presents general concepts associated with probability distributions for discrete random variables. It starts off by discussing the concept of a function and goes on to describe how a random variable is a type of function. The binomial distribution and the Bernoulli distribution are then used as examples of the probability mass functions (pmf’s). The pmfs can be used to specify prior distributions, likelihoods, likelihood profiles and/or posterior distributions in Bayesian inference.","PeriodicalId":285230,"journal":{"name":"Bayesian Statistics for Beginners","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bayesian Statistics for Beginners","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/OSO/9780198841296.003.0008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This chapter focuses on probability mass functions. One of the primary uses of Bayesian inference is to estimate parameters. To do so, it is necessary to first build a good understanding of probability distributions. This chapter introduces the idea of a random variable and presents general concepts associated with probability distributions for discrete random variables. It starts off by discussing the concept of a function and goes on to describe how a random variable is a type of function. The binomial distribution and the Bernoulli distribution are then used as examples of the probability mass functions (pmf’s). The pmfs can be used to specify prior distributions, likelihoods, likelihood profiles and/or posterior distributions in Bayesian inference.
概率质量函数
本章主要讨论概率质量函数。贝叶斯推理的主要用途之一是估计参数。要做到这一点,首先有必要对概率分布有一个很好的理解。本章介绍了随机变量的概念,并介绍了离散随机变量的概率分布的一般概念。它从讨论函数的概念开始,然后描述随机变量如何成为一种函数。然后用二项分布和伯努利分布作为概率质量函数的例子。在贝叶斯推理中,pmfs可用于指定先验分布、似然分布、似然分布和/或后验分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信