A Universal Bundle for a Compact Lie Group

L. Tu
{"title":"A Universal Bundle for a Compact Lie Group","authors":"L. Tu","doi":"10.2307/j.ctvrdf1gz.14","DOIUrl":null,"url":null,"abstract":"This chapter looks at a universal bundle for a compact Lie group. By Milnor's construction, every topological group has a universal bundle. Independently of Milnor's result, the chapter constructs a universal bundle for any compact Lie group G. This construction is based on the fact that every compact Lie group can be embedded as a subgroup of some orthogonal group O(k). The chapter first constructs a universal O(k)-bundle by finding a weakly contractible space on which O(k) acts freely. The infinite Stiefel variety V (k, ∞) is such a space. As a subgroup of O(k), the compact Lie group G will also act freely on V (k, ∞), thereby producing a universal G-bundle.","PeriodicalId":272846,"journal":{"name":"Introductory Lectures on Equivariant Cohomology","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Introductory Lectures on Equivariant Cohomology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2307/j.ctvrdf1gz.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This chapter looks at a universal bundle for a compact Lie group. By Milnor's construction, every topological group has a universal bundle. Independently of Milnor's result, the chapter constructs a universal bundle for any compact Lie group G. This construction is based on the fact that every compact Lie group can be embedded as a subgroup of some orthogonal group O(k). The chapter first constructs a universal O(k)-bundle by finding a weakly contractible space on which O(k) acts freely. The infinite Stiefel variety V (k, ∞) is such a space. As a subgroup of O(k), the compact Lie group G will also act freely on V (k, ∞), thereby producing a universal G-bundle.
紧李群的全称束
本章研究紧李群的全称束。根据Milnor的构造,每个拓扑群都有一个泛束。独立于Milnor的结果,本章构造了任意紧李群g的一个全称束。这种构造是基于每个紧李群都可以嵌入为某个正交群O(k)的子群的事实。本章首先通过寻找O(k)在其上自由作用的弱可缩空间构造出一个泛O(k)束。无限Stiefel变量V (k,∞)就是这样一个空间。紧李群G作为O(k)的子群,也可以自由作用于V (k,∞),从而产生一个泛G束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信