{"title":"Human-object-object-interaction affordance","authors":"Shaogang Ren, Yu Sun","doi":"10.1109/WORV.2013.6521912","DOIUrl":null,"url":null,"abstract":"This paper presents a novel human-object-object (HOO) interaction affordance learning approach that models the interaction motions between paired objects in a human-object-object way and use the motion models to improve the object recognition reliability. The innate interaction-affordance knowledge of the paired objects is modeled from a set of labeled training data that contains relative motions of the paired objects, humans actions, and object labels. The learned knowledge of the pair relationship is represented with a Bayesian Network and the trained network is used to improve recognition reliability of the objects.","PeriodicalId":130461,"journal":{"name":"2013 IEEE Workshop on Robot Vision (WORV)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Workshop on Robot Vision (WORV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WORV.2013.6521912","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28
Abstract
This paper presents a novel human-object-object (HOO) interaction affordance learning approach that models the interaction motions between paired objects in a human-object-object way and use the motion models to improve the object recognition reliability. The innate interaction-affordance knowledge of the paired objects is modeled from a set of labeled training data that contains relative motions of the paired objects, humans actions, and object labels. The learned knowledge of the pair relationship is represented with a Bayesian Network and the trained network is used to improve recognition reliability of the objects.