Self-tuning Fuzzy Logic Control of Greenhouse Temperature using Real-coded Genetic Algorithm

Fang Xu, Jiaoliao Chen, Libin Zhang, Hongwu Zhan
{"title":"Self-tuning Fuzzy Logic Control of Greenhouse Temperature using Real-coded Genetic Algorithm","authors":"Fang Xu, Jiaoliao Chen, Libin Zhang, Hongwu Zhan","doi":"10.1109/ICARCV.2006.345183","DOIUrl":null,"url":null,"abstract":"The greenhouse temperature model is built based on the balance of the energy. A new real-coded genetic algorithm (GA) for self-tuning fuzzy logic control (FLC) of greenhouse temperature is proposed, in which, an arithmetical crossover operator, a ranking-based reproduction operator and a non-uniform mutation operator are adopted. The Gaussian input membership functions for the error and the change-in-error of the temperature of FLC is optimized by GA in terms of the root-mean-square error (RMSE) with setpoint and input energy. Compared with the basic fuzzy control, the tuned FLC gives better performance in terms of improving control precision and saving energy","PeriodicalId":415827,"journal":{"name":"2006 9th International Conference on Control, Automation, Robotics and Vision","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 9th International Conference on Control, Automation, Robotics and Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICARCV.2006.345183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

The greenhouse temperature model is built based on the balance of the energy. A new real-coded genetic algorithm (GA) for self-tuning fuzzy logic control (FLC) of greenhouse temperature is proposed, in which, an arithmetical crossover operator, a ranking-based reproduction operator and a non-uniform mutation operator are adopted. The Gaussian input membership functions for the error and the change-in-error of the temperature of FLC is optimized by GA in terms of the root-mean-square error (RMSE) with setpoint and input energy. Compared with the basic fuzzy control, the tuned FLC gives better performance in terms of improving control precision and saving energy
基于实编码遗传算法的温室温度自整定模糊逻辑控制
在能量平衡的基础上建立了温室温度模型。提出了一种用于温室温度自整定模糊逻辑控制的实数编码遗传算法,该算法采用了算术交叉算子、基于排序的复制算子和非均匀突变算子。采用遗传算法,根据设定点和输入能量的均方根误差(RMSE),优化了FLC温度误差和误差变化的高斯输入隶属函数。与基本模糊控制相比,调整后的FLC在提高控制精度和节能方面具有更好的性能
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信