Siladitya Khan, Fan Feng, Soumya Goswami, S. McAleavey
{"title":"Modeling Bessel Acoustic Radiation Force Impulse Imaging with the k-Wave MATLAB Toolbox","authors":"Siladitya Khan, Fan Feng, Soumya Goswami, S. McAleavey","doi":"10.1109/WNYISPW57858.2022.9983492","DOIUrl":null,"url":null,"abstract":"Shear wave elasticity imaging (SWEI) is a non-invasive technique to assess mechanical properties of tissue, including elasticity and viscoelasticity by introducing acoustic energy by introduction of a radiation force. Traditional Acoustic Radiation Force Impulse (ARFI) are produced by focused and unfocused beams. Due to diminished acoustic intensity outside the focal zone, focused ARFI posseses limited depth-of-field, beyond which elasticity estimates are unreliable. Imaging quality in unfocused beams on the other hand are limited to the Fraunhofer zone due to near-field oscillations of the pressure profile. We report a SWEI approach with Bessel apodized ARFI that can reduce diffraction in the Fresnel zone and at the same time retain a large high intensity focal illumination. We evaluate elastogram image quality produced by Gaussian focused and Bessel apodized ARF with time domain simulations using k-wave which is an open-source acoustic wave field toolbox. Our results show image quality evaluated by CNRdB improves from 6.04 in focused ARF SWEI images to 16.06 in Bessel ARF SWEI.","PeriodicalId":427869,"journal":{"name":"2022 IEEE Western New York Image and Signal Processing Workshop (WNYISPW)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Western New York Image and Signal Processing Workshop (WNYISPW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WNYISPW57858.2022.9983492","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Shear wave elasticity imaging (SWEI) is a non-invasive technique to assess mechanical properties of tissue, including elasticity and viscoelasticity by introducing acoustic energy by introduction of a radiation force. Traditional Acoustic Radiation Force Impulse (ARFI) are produced by focused and unfocused beams. Due to diminished acoustic intensity outside the focal zone, focused ARFI posseses limited depth-of-field, beyond which elasticity estimates are unreliable. Imaging quality in unfocused beams on the other hand are limited to the Fraunhofer zone due to near-field oscillations of the pressure profile. We report a SWEI approach with Bessel apodized ARFI that can reduce diffraction in the Fresnel zone and at the same time retain a large high intensity focal illumination. We evaluate elastogram image quality produced by Gaussian focused and Bessel apodized ARF with time domain simulations using k-wave which is an open-source acoustic wave field toolbox. Our results show image quality evaluated by CNRdB improves from 6.04 in focused ARF SWEI images to 16.06 in Bessel ARF SWEI.