Dream Net: a privacy preserving continual leaming model for face emotion recognition

M. Mainsant, M. Solinas, M. Reyboz, C. Godin, M. Mermillod
{"title":"Dream Net: a privacy preserving continual leaming model for face emotion recognition","authors":"M. Mainsant, M. Solinas, M. Reyboz, C. Godin, M. Mermillod","doi":"10.1109/aciiw52867.2021.9666338","DOIUrl":null,"url":null,"abstract":"Continual learning is a growing challenge of artificial intelligence. Among algorithms alleviating catastrophic forgetting that have been developed in the past years, only few studies were focused on face emotion recognition. In parallel, the field of emotion recognition raised the ethical issue of privacy preserving. This paper presents Dream Net, a privacy preserving continual learning model for face emotion recognition. Using a pseudo-rehearsal approach, this model alleviates catastrophic forgetting by capturing the mapping function of a trained network without storing examples of the learned knowledge. We evaluated Dream Net on the Fer-2013 database and obtained an average accuracy of 45% ± 2 at the end of incremental learning of all classes compare to 16% ± 0 without any continual learning model.","PeriodicalId":105376,"journal":{"name":"2021 9th International Conference on Affective Computing and Intelligent Interaction Workshops and Demos (ACIIW)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 9th International Conference on Affective Computing and Intelligent Interaction Workshops and Demos (ACIIW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/aciiw52867.2021.9666338","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Continual learning is a growing challenge of artificial intelligence. Among algorithms alleviating catastrophic forgetting that have been developed in the past years, only few studies were focused on face emotion recognition. In parallel, the field of emotion recognition raised the ethical issue of privacy preserving. This paper presents Dream Net, a privacy preserving continual learning model for face emotion recognition. Using a pseudo-rehearsal approach, this model alleviates catastrophic forgetting by capturing the mapping function of a trained network without storing examples of the learned knowledge. We evaluated Dream Net on the Fer-2013 database and obtained an average accuracy of 45% ± 2 at the end of incremental learning of all classes compare to 16% ± 0 without any continual learning model.
梦境网:一种保护隐私的面部情绪识别持续学习模型
持续学习是人工智能面临的一个越来越大的挑战。在过去几年开发的减轻灾难性遗忘的算法中,针对面部情绪识别的研究很少。与此同时,情感识别领域提出了隐私保护的伦理问题。提出了一种保护隐私的人脸情感识别连续学习模型——梦网。该模型采用伪排练方法,通过捕获训练网络的映射函数而不存储所学知识的示例来减轻灾难性遗忘。我们在2013年4月的数据库中评估了Dream Net,在所有类别的增量学习结束时,平均准确率为45%±2,而没有任何持续学习模型的平均准确率为16%±0。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信