{"title":"A Neural Network Based Interactive Programing of a Deburring Robot in a Virtual Environment","authors":"T. Kesavadas, Chin Khor","doi":"10.1115/imece1997-1101","DOIUrl":null,"url":null,"abstract":"\n This paper describes an interactive neural network based system for specifying robotic tasks using virtual tools. This virtual environment allows an operator to reach into a live video scene and direct robots to use corresponding real tools to carry out complex metal finishing tasks. The virtual tool concept provides a human-machine interface that is robust to unanticipated developments and tunable to the specific requirements of a particular task. This interactive specification concept is applied to robotic deburring processes. A function is formulated to map the end-effector position of this robot to corresponding set of joint angles through a neural network learning process obtained through examples. The experimental result of such a system that has been implemented on the Mitsubishi RV-M1 robot shows the efficiency of the approach and its potential for use in virtual reality based interactive robotics.","PeriodicalId":432053,"journal":{"name":"Manufacturing Science and Engineering: Volume 1","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Manufacturing Science and Engineering: Volume 1","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece1997-1101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
This paper describes an interactive neural network based system for specifying robotic tasks using virtual tools. This virtual environment allows an operator to reach into a live video scene and direct robots to use corresponding real tools to carry out complex metal finishing tasks. The virtual tool concept provides a human-machine interface that is robust to unanticipated developments and tunable to the specific requirements of a particular task. This interactive specification concept is applied to robotic deburring processes. A function is formulated to map the end-effector position of this robot to corresponding set of joint angles through a neural network learning process obtained through examples. The experimental result of such a system that has been implemented on the Mitsubishi RV-M1 robot shows the efficiency of the approach and its potential for use in virtual reality based interactive robotics.