Modeling the volatility of Bitcoin returns using Nonparametric GARCH models

Sami Mestiri
{"title":"Modeling the volatility of Bitcoin returns using Nonparametric GARCH models","authors":"Sami Mestiri","doi":"10.59051/joaf.v13i1.489","DOIUrl":null,"url":null,"abstract":"Objective: The purpose of this paper is to demonstrate the effectiveness of the nonparametric GARCH model for the prediction of future Bitcoin prices.\n \nMethodology: The parametric GARCH models to characterize the volatility of Bitcoin returns are widely used in the empirical literature. Alternatively, we consider a non-parametric approach to model and forecast the volatility of Bitcoin returns.\n \nResults: We show that the volatility forecast of the nonparametric GARCH model yields superior performance compared to an extended class of parametric GARCH models.\n \nOriginality / relevance: The improved accuracy of forecasting the volatility of Bitcoin returns based on the nonparametric GARCH model suggests that this method offers an attractive and viable alternative to commonly used GARCH parametric models.","PeriodicalId":427059,"journal":{"name":"Journal of Academic Finance","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Academic Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59051/joaf.v13i1.489","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: The purpose of this paper is to demonstrate the effectiveness of the nonparametric GARCH model for the prediction of future Bitcoin prices.   Methodology: The parametric GARCH models to characterize the volatility of Bitcoin returns are widely used in the empirical literature. Alternatively, we consider a non-parametric approach to model and forecast the volatility of Bitcoin returns.   Results: We show that the volatility forecast of the nonparametric GARCH model yields superior performance compared to an extended class of parametric GARCH models.   Originality / relevance: The improved accuracy of forecasting the volatility of Bitcoin returns based on the nonparametric GARCH model suggests that this method offers an attractive and viable alternative to commonly used GARCH parametric models.
使用非参数GARCH模型对比特币收益的波动性进行建模
目的:本文的目的是证明非参数GARCH模型预测未来比特币价格的有效性。方法:在实证文献中广泛使用参数GARCH模型来表征比特币收益的波动性。或者,我们考虑一种非参数方法来建模和预测比特币回报的波动性。结果:我们表明,与参数GARCH模型的扩展类相比,非参数GARCH模型的波动率预测具有更好的性能。原创性/相关性:基于非参数GARCH模型预测比特币回报波动性的准确性提高,表明该方法为常用的GARCH参数模型提供了一种有吸引力且可行的替代方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信