Systolic Array for Parallel Solution of the Robust Kalman Filter Used for Attitude and Position Estimations in UAVs

Leandro José Evilásio Campos, Marco Henrique Terra, Ricardo Menotti, Roberto Santos Inoue
{"title":"Systolic Array for Parallel Solution of the Robust Kalman Filter Used for Attitude and Position Estimations in UAVs","authors":"Leandro José Evilásio Campos, Marco Henrique Terra, Ricardo Menotti, Roberto Santos Inoue","doi":"10.1109/ICUAS57906.2023.10156196","DOIUrl":null,"url":null,"abstract":"The efficient Kalman filter has been widely used in recent decades to obtain air navigation information in UAVs. However, for a good performance of the Kalman filter, the model that describes the system dynamics must not contain uncertainties. This paper presents the implementation of a robust Kalman filter to estimate the attitude, velocity, and position of UAVs. The robust filter considers uncertainties in the sensor models. A mathematical structure based on the solution of linear systems synthesizes the predictor-corrector robust estimation algorithm. The main contribution of this study is the proposed QR decomposition based on Givens rotation to solve the linear system. The simulated experiments used sensory data collected in Zürich-Switzerland and ground truth referencing attitude, velocity, and position. The offline simulation results express the effectiveness of the robust Kalman filter for this application, with a reduction of up to 18.9% in the estimation error, in relation to the standard Kalman filter. The proposal to use systolic arrays for numerical solutions has shown promise for implementation in parallel processing platforms, such as FPGAs.","PeriodicalId":379073,"journal":{"name":"2023 International Conference on Unmanned Aircraft Systems (ICUAS)","volume":"345 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Unmanned Aircraft Systems (ICUAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICUAS57906.2023.10156196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The efficient Kalman filter has been widely used in recent decades to obtain air navigation information in UAVs. However, for a good performance of the Kalman filter, the model that describes the system dynamics must not contain uncertainties. This paper presents the implementation of a robust Kalman filter to estimate the attitude, velocity, and position of UAVs. The robust filter considers uncertainties in the sensor models. A mathematical structure based on the solution of linear systems synthesizes the predictor-corrector robust estimation algorithm. The main contribution of this study is the proposed QR decomposition based on Givens rotation to solve the linear system. The simulated experiments used sensory data collected in Zürich-Switzerland and ground truth referencing attitude, velocity, and position. The offline simulation results express the effectiveness of the robust Kalman filter for this application, with a reduction of up to 18.9% in the estimation error, in relation to the standard Kalman filter. The proposal to use systolic arrays for numerical solutions has shown promise for implementation in parallel processing platforms, such as FPGAs.
用于无人机姿态和位置估计的鲁棒卡尔曼滤波并行解的收缩阵列
近几十年来,高效卡尔曼滤波被广泛应用于无人机的空中导航信息获取。然而,为了使卡尔曼滤波具有良好的性能,描述系统动力学的模型必须不包含不确定性。本文提出了一种鲁棒卡尔曼滤波器,用于估计无人机的姿态、速度和位置。鲁棒滤波器考虑了传感器模型中的不确定性。基于线性系统解的数学结构综合了预测-校正鲁棒估计算法。本研究的主要贡献是提出了基于Givens旋转的QR分解来求解线性系统。模拟实验使用了在z rich- swiss收集的感官数据和参考姿态、速度和位置的地面真实数据。离线仿真结果表明了鲁棒卡尔曼滤波器在该应用中的有效性,与标准卡尔曼滤波器相比,估计误差降低了18.9%。使用收缩阵列进行数值求解的建议显示出在并行处理平台(如fpga)中实现的希望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信