The Classification of Magic SET Squares

E. Chen, William Du, Tanmay Gupta, T. Khovanova, Alicia Li, Srikar Mallajosyula, Rohit Raghavan, Arkajyoti Sinha, Maya Smith, Matthew Qian, Samuel Wang
{"title":"The Classification of Magic SET Squares","authors":"E. Chen, William Du, Tanmay Gupta, T. Khovanova, Alicia Li, Srikar Mallajosyula, Rohit Raghavan, Arkajyoti Sinha, Maya Smith, Matthew Qian, Samuel Wang","doi":"10.2478/rmm-2020-0005","DOIUrl":null,"url":null,"abstract":"A magic SET square is a 3 by 3 table of SET cards such that each row, column, diagonal, and anti-diagonal is a set. We allow the following transformations of the square: shuffling features, shuffling values within the features, rotations and reflections of the square. Under these transformations, there are 21 types of magic SET squares. We calculate the number of squares of each type. In addition, we discuss a game of SET tic-tac-toe.","PeriodicalId":429168,"journal":{"name":"arXiv: History and Overview","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: History and Overview","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/rmm-2020-0005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A magic SET square is a 3 by 3 table of SET cards such that each row, column, diagonal, and anti-diagonal is a set. We allow the following transformations of the square: shuffling features, shuffling values within the features, rotations and reflections of the square. Under these transformations, there are 21 types of magic SET squares. We calculate the number of squares of each type. In addition, we discuss a game of SET tic-tac-toe.
魔术集正方形的分类
魔术SET方块是一个3 × 3的SET卡片表,这样每一行、列、对角线和反对角线都是一个集合。我们允许对正方形进行以下变换:洗牌特征,洗牌特征内的值,正方形的旋转和反射。在这些变换下,有21种魔法SET方格。我们计算每种类型的平方数。此外,我们还讨论了SET井字游戏。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信