Improving RGB-D SLAM using wi-fi: poster abstract

Z. S. Hashemifar, Charuvahan Adhivarahan, Karthik Dantu
{"title":"Improving RGB-D SLAM using wi-fi: poster abstract","authors":"Z. S. Hashemifar, Charuvahan Adhivarahan, Karthik Dantu","doi":"10.1145/3055031.3055067","DOIUrl":null,"url":null,"abstract":"Simultaneous Localization and Mapping (SLAM) is the process of learning about both the environment and about a robot's location with respect to the environment and is essential for robots to autonomously navigate. A variety of algorithms using many different sensors such as RGB-D cameras, laser range finders, ultrasonic sensors and others have been proposed to perform SLAM. However, these algorithms face common challenges are that of computational complexity, wrong loop closure detection and failure to localize correctly when robot loses state (kidnapped robot problem). In this work, we utilize Wi-Fi signal strength sensing to aid the SLAM process in indoor environments and address the challenges mentioned above.","PeriodicalId":206082,"journal":{"name":"Proceedings of the 16th ACM/IEEE International Conference on Information Processing in Sensor Networks","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 16th ACM/IEEE International Conference on Information Processing in Sensor Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3055031.3055067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Simultaneous Localization and Mapping (SLAM) is the process of learning about both the environment and about a robot's location with respect to the environment and is essential for robots to autonomously navigate. A variety of algorithms using many different sensors such as RGB-D cameras, laser range finders, ultrasonic sensors and others have been proposed to perform SLAM. However, these algorithms face common challenges are that of computational complexity, wrong loop closure detection and failure to localize correctly when robot loses state (kidnapped robot problem). In this work, we utilize Wi-Fi signal strength sensing to aid the SLAM process in indoor environments and address the challenges mentioned above.
利用wi-fi改进RGB-D SLAM:海报摘要
同时定位和绘图(SLAM)是了解环境和机器人相对于环境的位置的过程,是机器人自主导航的必要条件。已经提出了使用许多不同传感器(如RGB-D相机、激光测距仪、超声波传感器等)的各种算法来执行SLAM。然而,这些算法面临的共同挑战是计算复杂性,错误的闭环检测和机器人失去状态时无法正确定位(绑架机器人问题)。在这项工作中,我们利用Wi-Fi信号强度传感来帮助室内环境中的SLAM过程,并解决上述挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信