Groups of Homeomorphisms of One-Manifolds, I: Actions of Nonlinear Groups

Benson Farb, J. Franks
{"title":"Groups of Homeomorphisms of One-Manifolds, I: Actions of Nonlinear Groups","authors":"Benson Farb, J. Franks","doi":"10.1515/9780691185897-007","DOIUrl":null,"url":null,"abstract":"This self-contained paper is part of a series \\cite{FF2,FF3} on actions by diffeomorphisms of infinite groups on compact manifolds. The two main results presented here are: \n1) Any homomorphism of (almost any) mapping class group or automorphism group of a free group into $\\Diff_+^r(S^1), r\\geq 2$ is trivial. For r=0 Nielsen showed that in many cases nontrivial (even faithful) representations exist. Somewhat weaker results are proven for finite index subgroups. \n2) We construct a finitely-presented group of real-analytic diffeomorphisms of $\\R$ which is not residually finite.","PeriodicalId":404905,"journal":{"name":"What's Next?","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"What's Next?","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/9780691185897-007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

This self-contained paper is part of a series \cite{FF2,FF3} on actions by diffeomorphisms of infinite groups on compact manifolds. The two main results presented here are: 1) Any homomorphism of (almost any) mapping class group or automorphism group of a free group into $\Diff_+^r(S^1), r\geq 2$ is trivial. For r=0 Nielsen showed that in many cases nontrivial (even faithful) representations exist. Somewhat weaker results are proven for finite index subgroups. 2) We construct a finitely-presented group of real-analytic diffeomorphisms of $\R$ which is not residually finite.
一元流形的同胚群,I:非线性群的作用
本文是紧流形上无限群的微分同态作用的系列\cite{FF2,FF3}的一部分。这里给出的两个主要结果是:1)(几乎任何)映射类群或自由群的自同构群到$\Diff_+^r(S^1), r\geq 2$的任何同态都是平凡的。对于r=0, Nielsen表明在许多情况下存在非平凡的(甚至忠实的)表示。对于有限索引子群证明了一些较弱的结果。2)构造了$\R$的非残限实解析微分同态的有限呈现群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信