The prediction of eigenvalues of the normalized laplacian matrix for image registration

Chengcai Leng, Haipeng Zhang
{"title":"The prediction of eigenvalues of the normalized laplacian matrix for image registration","authors":"Chengcai Leng, Haipeng Zhang","doi":"10.1109/FSKD.2016.7603419","DOIUrl":null,"url":null,"abstract":"Spectral graph theory can characterize the global properties and extract structural information of a graph. The normalized Laplacian matrix of a graph has positive or zero eigenvalues, and the largest eigenvalues is less than or equal to 2. In this paper, the internal rules of the eigenvalues of the normalized Laplacian matrix will be proposed. The range of the eigenvalues is further narrowed and the distribution of the eigenvalues is given, so the prediction of eigenvalues will conduct the research of the spectral graph theory. We apply this technique to image registration; the experimental results on image registration are very encouraging.","PeriodicalId":373155,"journal":{"name":"2016 12th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD)","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 12th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FSKD.2016.7603419","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Spectral graph theory can characterize the global properties and extract structural information of a graph. The normalized Laplacian matrix of a graph has positive or zero eigenvalues, and the largest eigenvalues is less than or equal to 2. In this paper, the internal rules of the eigenvalues of the normalized Laplacian matrix will be proposed. The range of the eigenvalues is further narrowed and the distribution of the eigenvalues is given, so the prediction of eigenvalues will conduct the research of the spectral graph theory. We apply this technique to image registration; the experimental results on image registration are very encouraging.
用于图像配准的归一化拉普拉斯矩阵特征值的预测
谱图理论可以刻画图的整体性质,提取图的结构信息。图的归一化拉普拉斯矩阵具有正特征值或零特征值,且最大特征值小于或等于2。本文给出了归一化拉普拉斯矩阵特征值的内部规则。进一步缩小了特征值的范围,给出了特征值的分布,因此特征值的预测将进行谱图理论的研究。我们将该技术应用于图像配准;图像配准的实验结果令人鼓舞。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信