Computation of the subspaces for entire eigenstructure assignment via the singular value decomposition

J. Silverthorn, J. Reid
{"title":"Computation of the subspaces for entire eigenstructure assignment via the singular value decomposition","authors":"J. Silverthorn, J. Reid","doi":"10.1109/CDC.1980.271993","DOIUrl":null,"url":null,"abstract":"This short paper examines use of the singular value decomposition of the augmented matrix [A - ¿I,B] to find its null space and then, subsequently, the subspace of possible closed loop eigenvectors and the necessary feedback matrix, K, for the assignment of the specified closed loop eigenvalues and eigenvectors. This paper describes the very attractive computational alternative of using the singular value decomposition rather than the previously reported approach of elementary column operations. The assignment of complex eigenvalues and repeated eigenvalues using the same basic singular value decomposition of a real matrix is also discussed.","PeriodicalId":332964,"journal":{"name":"1980 19th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1980-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1980 19th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.1980.271993","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This short paper examines use of the singular value decomposition of the augmented matrix [A - ¿I,B] to find its null space and then, subsequently, the subspace of possible closed loop eigenvectors and the necessary feedback matrix, K, for the assignment of the specified closed loop eigenvalues and eigenvectors. This paper describes the very attractive computational alternative of using the singular value decomposition rather than the previously reported approach of elementary column operations. The assignment of complex eigenvalues and repeated eigenvalues using the same basic singular value decomposition of a real matrix is also discussed.
用奇异值分解计算整个特征结构赋值的子空间
本文研究了增广矩阵[A -¿I,B]的奇异值分解的使用,以找到它的零空间,然后,随后,可能的闭环特征向量的子空间和必要的反馈矩阵K,用于指定闭环特征值和特征向量的分配。本文描述了一种非常有吸引力的计算替代方法,即使用奇异值分解而不是先前报道的基本列操作方法。本文还讨论了利用实矩阵的相同基本奇异值分解来分配复特征值和重复特征值的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信