On linear codes over a non-chain extension of F2 + uF2

B. Srinivasulu, Maheshanand Bhaintwal
{"title":"On linear codes over a non-chain extension of F2 + uF2","authors":"B. Srinivasulu, Maheshanand Bhaintwal","doi":"10.1109/C3IT.2015.7060155","DOIUrl":null,"url":null,"abstract":"In this paper we study linear codes over a new ring R = F<sub>2</sub> + uF<sub>2</sub> + vF<sub>2</sub> + uvF<sub>2</sub> with u<sup>2</sup> = 0, v<sup>2</sup> = v and uv = vu, which is a non chain extension of the ring F<sub>2</sub>+uF<sub>2</sub>, u<sup>2</sup> =0. We have obtained Mac Williams identities for Lee weight enumerator of linear codes over R using a Gray map from R<sup>n</sup> to (F<sub>2</sub> +uF<sub>2</sub>)<sup>n</sup>. We have studied self-dual codes over R and determined some existential conditions for Type I and Type II codes over R. Further we have briefly studied cyclic codes over R. It is shown that R[x]/〈x<sup>n</sup> - 1〉 is a PIR when n is odd. The form of the generator of a cyclic code of odd length over R is obtained.","PeriodicalId":402311,"journal":{"name":"Proceedings of the 2015 Third International Conference on Computer, Communication, Control and Information Technology (C3IT)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 Third International Conference on Computer, Communication, Control and Information Technology (C3IT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/C3IT.2015.7060155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper we study linear codes over a new ring R = F2 + uF2 + vF2 + uvF2 with u2 = 0, v2 = v and uv = vu, which is a non chain extension of the ring F2+uF2, u2 =0. We have obtained Mac Williams identities for Lee weight enumerator of linear codes over R using a Gray map from Rn to (F2 +uF2)n. We have studied self-dual codes over R and determined some existential conditions for Type I and Type II codes over R. Further we have briefly studied cyclic codes over R. It is shown that R[x]/〈xn - 1〉 is a PIR when n is odd. The form of the generator of a cyclic code of odd length over R is obtained.
关于F2 + uF2非链扩展上的线性码
本文研究了一个新的环R = F2+uF2 + vF2 + uvF2上的线性码,其中u2 =0, v2 = v, uv = vu,它是环F2+uF2, u2 =0的非链扩展。利用从Rn到(F2 +uF2)n的灰色映射,我们得到了R上线性码的Lee权枚举数的Mac Williams恒等式。我们研究了R上的自对偶码,并确定了R上的I型和II型码的存在条件。我们进一步研究了R上的循环码,证明了当n为奇数时R[x]/ < xn - 1 >是一个PIR。得到了长度为奇数/ R的循环码的生成形式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信