Yogeswaran Umasankar, A. Jalal, Pablo J. Gonzalez, Mustahsin Chowdhury, A. Alfonso, S. Bhansali
{"title":"Wearable alcohol monitoring device with auto-calibration ability for high chemical specificity","authors":"Yogeswaran Umasankar, A. Jalal, Pablo J. Gonzalez, Mustahsin Chowdhury, A. Alfonso, S. Bhansali","doi":"10.1109/BSN.2016.7516287","DOIUrl":null,"url":null,"abstract":"Multimodal electrochemical method comprising open circuit potential and amperometric technique has been implemented to improve the specificity of the ethanol detection in a fuel cell sensor system. A miniaturized device with LMP91000 potentiostat and a processing unit has been constructed containing simple auto-calibration algorithm. The developed processing unit consist of a low power microcontroller (MSP430F5529LP). The sensing unit composed of a three electrode proton exchange membrane (PEM) fuel cell sensor, where Nafion is the PEM. In these studies, the signal due to interference has been eliminated with the support of algorithm and multimodal electrochemical method. The results show that the sensor can detect ethanol as low as 5ppm. The constructed device was validated by comparing it with the commercially available potentiostat, and the response was similar in both devices.","PeriodicalId":205735,"journal":{"name":"2016 IEEE 13th International Conference on Wearable and Implantable Body Sensor Networks (BSN)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 13th International Conference on Wearable and Implantable Body Sensor Networks (BSN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BSN.2016.7516287","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
Multimodal electrochemical method comprising open circuit potential and amperometric technique has been implemented to improve the specificity of the ethanol detection in a fuel cell sensor system. A miniaturized device with LMP91000 potentiostat and a processing unit has been constructed containing simple auto-calibration algorithm. The developed processing unit consist of a low power microcontroller (MSP430F5529LP). The sensing unit composed of a three electrode proton exchange membrane (PEM) fuel cell sensor, where Nafion is the PEM. In these studies, the signal due to interference has been eliminated with the support of algorithm and multimodal electrochemical method. The results show that the sensor can detect ethanol as low as 5ppm. The constructed device was validated by comparing it with the commercially available potentiostat, and the response was similar in both devices.